Skip to main content

2D vector, line and polygon classes, and a spatial hash implementation

Project description

wasabigeom - fast geometry types for Python games

Build Wheels PyPI PyPI - Python Version PyPI - Wheel Documentation Status Discord

wasabigeom is a 2D geometry library intended for game development. It started life as a pure Python library but is now implemented in optimised Cython code.

Documentation

View on ReadTheDocs

Installation

To install, just run:

pip install wasabi-geom

What's new in 2.0.0

I took the existing wasabi.geom code and Cythonised it.

I've made some big, breaking changes to the interface; notably, I prefer radians thes days and eschew namespace packages. To install the old, pure-Python version, pin to wasabi-geom<2.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wasabi-geom-2.1.0.tar.gz (15.5 kB view details)

Uploaded Source

Built Distributions

wasabi_geom-2.1.0-cp39-cp39-win_amd64.whl (202.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

wasabi_geom-2.1.0-cp39-cp39-win32.whl (169.8 kB view details)

Uploaded CPython 3.9 Windows x86

wasabi_geom-2.1.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (965.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ x86-64

wasabi_geom-2.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (904.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

wasabi_geom-2.1.0-cp39-cp39-macosx_10_9_x86_64.whl (251.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

wasabi_geom-2.1.0-cp38-cp38-win_amd64.whl (203.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

wasabi_geom-2.1.0-cp38-cp38-win32.whl (170.6 kB view details)

Uploaded CPython 3.8 Windows x86

wasabi_geom-2.1.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ x86-64

wasabi_geom-2.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (962.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

wasabi_geom-2.1.0-cp38-cp38-macosx_10_9_x86_64.whl (245.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

wasabi_geom-2.1.0-cp37-cp37m-win_amd64.whl (194.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

wasabi_geom-2.1.0-cp37-cp37m-win32.whl (164.2 kB view details)

Uploaded CPython 3.7m Windows x86

wasabi_geom-2.1.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ x86-64

wasabi_geom-2.1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (937.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

wasabi_geom-2.1.0-cp37-cp37m-macosx_10_9_x86_64.whl (241.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

wasabi_geom-2.1.0-cp36-cp36m-win_amd64.whl (194.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

wasabi_geom-2.1.0-cp36-cp36m-win32.whl (164.0 kB view details)

Uploaded CPython 3.6m Windows x86

wasabi_geom-2.1.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.5+ x86-64

wasabi_geom-2.1.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl (948.2 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.5+ i686

wasabi_geom-2.1.0-cp36-cp36m-macosx_10_9_x86_64.whl (241.3 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file wasabi-geom-2.1.0.tar.gz.

File metadata

  • Download URL: wasabi-geom-2.1.0.tar.gz
  • Upload date:
  • Size: 15.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for wasabi-geom-2.1.0.tar.gz
Algorithm Hash digest
SHA256 f6b67e2d0a17e83ec2fc55e22f94cd077c1e0de18fb1c4d96f1ffe47e3116e4d
MD5 694aebf4e1f30f44a39d58e1cc614a2e
BLAKE2b-256 12065b0f13dce8bea868e97287a5b6cff978f5729c65d49e8a63a63fc451fc58

See more details on using hashes here.

File details

Details for the file wasabi_geom-2.1.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: wasabi_geom-2.1.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 202.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for wasabi_geom-2.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 875696c6f901a010b13716d9e1bd663d133c4800b0498608d4d714a35aa2bc83
MD5 534980bad30f16dd0ffd9ba61eb6d639
BLAKE2b-256 2cf9dbaf0cbaf8d8b5753b5a8e4961aa7fa4ffff25e2eb36fabba8c68fb1bf27

See more details on using hashes here.

File details

Details for the file wasabi_geom-2.1.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: wasabi_geom-2.1.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 169.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for wasabi_geom-2.1.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 956d0191973c3b2921022c7bcd822f45c9a43b981654e32eeb6cc897920c40ca
MD5 4bcbd869f5ba5736b51c4ef436d52e41
BLAKE2b-256 5c53b0723ee8be606f8168ff4eb64e72cd7cf2ae0665b5952ebe114e614cbdef

See more details on using hashes here.

File details

Details for the file wasabi_geom-2.1.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for wasabi_geom-2.1.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c004cf6f30067295807983b0a186706fc02a2bde6c7da5da2050bbcacc5e602b
MD5 b5df09af2aa3fcf0d5ab2127323910c4
BLAKE2b-256 6143f176753db1823fa58f946b60e1eee95de6d7e1e0637e84fb9c76c6cbcec6

See more details on using hashes here.

File details

Details for the file wasabi_geom-2.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for wasabi_geom-2.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 e5185e10dc8f44b0759b3a2603b65627aaa0531de669b00d0a7d1a7aba1c9adb
MD5 2fedd561718be9686e6c0bfdb07f7f2f
BLAKE2b-256 c928d7db707195f499eaf2263c85dbba2899c1bf46df61f5361c3e017a876928

See more details on using hashes here.

File details

Details for the file wasabi_geom-2.1.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: wasabi_geom-2.1.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 251.2 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for wasabi_geom-2.1.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 56d7e078e96bc0ef5584d5b62f8636f2803b98fe1dc5e0aa4ffdeaa0df41f321
MD5 2bdc45d2511014951e2a4ed80ad92bbd
BLAKE2b-256 3682793262ff8dc75fb7428be8dd135f6c174fa6484b5b859966bb28a700d8c9

See more details on using hashes here.

File details

Details for the file wasabi_geom-2.1.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: wasabi_geom-2.1.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 203.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for wasabi_geom-2.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b6f20c4d829edd4ced7d4a049a05d3d44ce42777d295420a01157021773008f0
MD5 2e44c6a15bbc3d10c40e3fc454c3ebe5
BLAKE2b-256 a25847c1d5b7738530fc45b6069f418b237c09e562ac499e57c06895d38bac3d

See more details on using hashes here.

File details

Details for the file wasabi_geom-2.1.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: wasabi_geom-2.1.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 170.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for wasabi_geom-2.1.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 c984b6c2806002ecb4875b3353e27a41365027efed465b1fc8d38d70140fb67e
MD5 0d2ab57acba00269eb137331411c05e4
BLAKE2b-256 0caaaaadc93d6d042ecb0bbb6526512fe25d3098a8aa909949e019b6f36562dd

See more details on using hashes here.

File details

Details for the file wasabi_geom-2.1.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for wasabi_geom-2.1.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 75dcba909891d803236ed7003d615dbb2fc0078403ae553a01bde8408fa0ee20
MD5 d443658ca12ca6eab81036311e97c562
BLAKE2b-256 fd7fdcf98c4a0ddfa03a6c4a390cac6a1e01a239fd922d7b3a68c0971758ae87

See more details on using hashes here.

File details

Details for the file wasabi_geom-2.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for wasabi_geom-2.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 1375eae282d4399701e12ba7920222f35a8df5d29a3d696cf6f55b7e3819df5a
MD5 fdf6fdbed4f65af063d671968d1cdf39
BLAKE2b-256 f116275f259f86fb6193a416f9bef4c0c2199f49568728cc7a0de7da2101cd89

See more details on using hashes here.

File details

Details for the file wasabi_geom-2.1.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: wasabi_geom-2.1.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 245.9 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for wasabi_geom-2.1.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 09ef872d4b44b37180fd250015a148154a5367586be2c64c45ec3f8397291dee
MD5 0c299d4d96ba13b144a4d1c282e23336
BLAKE2b-256 50eded05c8413e8259327d03a544886519882de1d891004e8d00c6f80b40c188

See more details on using hashes here.

File details

Details for the file wasabi_geom-2.1.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: wasabi_geom-2.1.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 194.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for wasabi_geom-2.1.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 9658f176f9199719b1dd1fe88cb9652b3f686196e5a18540897a92ce346d9835
MD5 e1616ed8e2d1b219b7090d6df648c4f2
BLAKE2b-256 11d14242700248ace2ccc957aaa1ea2e65615724fed26d566e2f3d224c313010

See more details on using hashes here.

File details

Details for the file wasabi_geom-2.1.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: wasabi_geom-2.1.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 164.2 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for wasabi_geom-2.1.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 29e0c946a0f88947ed688f8a0371c8c23f1323faffc005642dffc67a7d8f2c78
MD5 97e5e4474e1dfe1118124d7e4b77ed98
BLAKE2b-256 198474c08ee2e1f3292bb989191bd1797f499428aa36c791986d390a3466b9c4

See more details on using hashes here.

File details

Details for the file wasabi_geom-2.1.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for wasabi_geom-2.1.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b183d07fce98184a63a57a6a9f42c70dd76746455f0406b292ac95567a0892de
MD5 2334d0d9eea4fe5a51fb319a267a3ee3
BLAKE2b-256 299162de3722987e7f706e7bc09008a29b1d39de1f50d5ef14495ded89de8129

See more details on using hashes here.

File details

Details for the file wasabi_geom-2.1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for wasabi_geom-2.1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 a3278dbadbc7b89313ac1251c090a87ed2bde5408451b3df0605f71e7db4fe88
MD5 52dd2eca7e7794045c92cf7a99db6ff8
BLAKE2b-256 b5b91f72bb3985ec1f7bc29dda2b0e62630870d9c9fd88ef66ed3254ff3b0466

See more details on using hashes here.

File details

Details for the file wasabi_geom-2.1.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: wasabi_geom-2.1.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 241.7 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for wasabi_geom-2.1.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cbad125d2aab503550c366f57239863e975cd224296059e5a2b9d921359ec0fd
MD5 4e65f8dddcf5e0ce45c7c7c9553f2f84
BLAKE2b-256 cbe4f03e8fd4b6e9aa94b8c4701dca3f89c12150e290808316177471c693a29c

See more details on using hashes here.

File details

Details for the file wasabi_geom-2.1.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: wasabi_geom-2.1.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 194.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for wasabi_geom-2.1.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 e7ebce69ac30959e4d4cde58171d37f696489c98dbcc613f18b81e1fb7d67dd9
MD5 7b3cdb857c73465441ea2f66f870d1ab
BLAKE2b-256 99a0e034177f3e5a508ed621d292c198dd585030e3d4e20e175f3f8d256112cb

See more details on using hashes here.

File details

Details for the file wasabi_geom-2.1.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: wasabi_geom-2.1.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 164.0 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for wasabi_geom-2.1.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 2653121f89d2f6b72aca9b172da182bee0287c2b3b62d7959f990fbe844fd910
MD5 0d8ae179afa565fa8065d483baaea2d8
BLAKE2b-256 867565b523a80e6170e87b02a90bdc3c2d00338eed86df37928d5d19d6e40b80

See more details on using hashes here.

File details

Details for the file wasabi_geom-2.1.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for wasabi_geom-2.1.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 83200beb86352ecd8a7df7d7651b5ae4827ba4ee81652f3d5612b9ef37eaaf76
MD5 b473a488b985088d462be9a10f0cfb57
BLAKE2b-256 f7778f8216f841f2e4bf2e500125aa49191f16caae7fc4845c5d8650778e2a7d

See more details on using hashes here.

File details

Details for the file wasabi_geom-2.1.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for wasabi_geom-2.1.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 edb23a197c75ec7508ab6fe683d4f4ec361e4f644f09c4ee0196e6dc75678a07
MD5 9b6ad28dfe57c7c2a0c9bf28de1f1086
BLAKE2b-256 835f8946d74f7c95afeb5844a8f81825b163bbbd47fbbf117b985d5ad481ad43

See more details on using hashes here.

File details

Details for the file wasabi_geom-2.1.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: wasabi_geom-2.1.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 241.3 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for wasabi_geom-2.1.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 80bf1a81de80a9cefcf45d257d87e598888c913b571d11521ca2efaf91bdbff4
MD5 8082bdadae365209f0abfd911d56fd68
BLAKE2b-256 0025d2569590b358be4d2c285bb13a993af32e76ffd2f256bea63e4be9774820

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page