Skip to main content

Wave optical simulations and deconvolution of optical properties

Project description

waveorder

PyPI - Python Version Downloads Python package index Development Status

This computational imaging library enables wave-optical simulation and reconstruction of optical properties that report microscopic architectural order.

Computational label-free imaging

This vectorial wave simulator and reconstructor enabled the development of a new label-free imaging method, permittivity tensor imaging (PTI), that measures density and 3D orientation of biomolecules with diffraction-limited resolution. These measurements are reconstructed from polarization-resolved images acquired with a sequence of oblique illuminations.

The acquisition, calibration, background correction, reconstruction, and applications of PTI are described in the following preprint:

 L.-H. Yeh, I. E. Ivanov, B. B. Chhun, S.-M. Guo, E. Hashemi, J. R. Byrum, J. A. Pérez-Bermejo, H. Wang, Y. Yu, P. G. Kazansky, B. R. Conklin, M. H. Han, and S. B. Mehta, "uPTI: uniaxial permittivity tensor imaging of intrinsic density and anisotropy," bioRxiv 2020.12.15.422951 (2020).

In addition to PTI, waveorder enables simulations and reconstructions of subsets of label-free measurements with subsets of the acquired data:

  1. Reconstruction of 2D or 3D phase, projected retardance, and in-plane orientation from a polarization-diverse volumetric brightfield acquisition (QLIPP)

  2. Reconstruction of 2D or 3D phase from a volumetric brightfield acquisition (2D/3D (PODT) phase)

  3. Reconstruction of 2D or 3D phase from an illumination-diverse volumetric acquisition (2D/3D differential phase contrast)

PTI provides volumetric reconstructions of mean permittivity ($\propto$ material density), differential permittivity ($\propto$ material anisotropy), 3D orientation, and optic sign. The following figure summarizes PTI acquisition and reconstruction with a small optical section of the mouse brain tissue:

Data_flow

The example notebooks illustrate simulations and reconstruction for 2D QLIPP, 3D PODT, and 2D/3D PTI methods.

If you are interested in deploying QLIPP or PODT for label-free imaging at scale, checkout our napari plugin, recOrder-napari.

Correlative imaging

In addition to label-free reconstruction algorithms, waveorder also implements widefield fluorescence and fluorescence polarization reconstruction algorithms for correlative label-free and fluorescence imaging.

  1. Correlative measurements of biomolecular density and orientation from polarization-diverse widefield imaging (multimodal Instant PolScope)

We provide an example notebook for widefield fluorescence deconvolution.

Citation

Please cite this repository, along with the relevant preprint or paper, if you use or adapt this code. The citation information can be found by clicking "Cite this repository" button in the About section in the right sidebar.

Installation

(Optional but recommended) install anaconda and create a virtual environment:

conda create -y -n waveorder python=3.9
conda activate waveorder

Install waveorder from PyPI:

pip install waveorder

Use waveorder in your scripts:

python
>>> import waveorder

(Optional) Download the repository, install jupyter, and experiment with the example notebooks

git clone https://github.com/mehta-lab/waveorder.git
pip install jupyter
jupyter notebook ./waveorder/examples/

(Optional) Use NVIDIA GPUs by installing cupy with these instructions. Check that cupy is properly installed with

python
>>> import cupy

To use GPUs in waveorder set use_gpu=True when initializing the simulator and reconstructor classes.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

waveorder-1.0.0.tar.gz (66.3 MB view details)

Uploaded Source

Built Distribution

waveorder-1.0.0-py3-none-any.whl (64.6 kB view details)

Uploaded Python 3

File details

Details for the file waveorder-1.0.0.tar.gz.

File metadata

  • Download URL: waveorder-1.0.0.tar.gz
  • Upload date:
  • Size: 66.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.7

File hashes

Hashes for waveorder-1.0.0.tar.gz
Algorithm Hash digest
SHA256 23d8428b59339049f13ac13d9f2f705ffab193a718d8d5cf302708ae58e6595f
MD5 7b21955883fec507e012a37273890b71
BLAKE2b-256 4c45211bcfffa5abafc89d7c85e4547ddf78cd3c5f87eeaa556c46774ad6c0ee

See more details on using hashes here.

File details

Details for the file waveorder-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: waveorder-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 64.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.7

File hashes

Hashes for waveorder-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 333ea56c06ce514df2c8345a4738fc4b4482b43cedfb23074bc68c10fe65cd52
MD5 d6bba0fbb36820a79aa29c2c77c0aaac
BLAKE2b-256 a24fc15b507d1def64f2ae6a85f3de54ec186b99359cff0955943bfc9dfe89ce

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page