Skip to main content

Toolkit for encapsulating Python-based computation into deployable and distributable tasks

Project description

werkit

version python versions license build code style

Toolkit for encapsulating Python-based computation into deployable and distributable tasks.

Provides code that helps package things up:

  • Serializing results
  • Handling and serializing errors
  • Deploying task workers using Redis, RQ and the Fargate CLI

They're particularly useful for providing repsonse consistency across different revisions of a service or different services.

Installation

pip install werkit

Usage

from werkit import Manager

def myfunc(param, verbose=False, handle_exceptions=True):
    with Manager(handle_exceptions=handle_exceptions, verbose=verbose) as manager:
        manager.result = do_some_computation()
    return manager.serialized_result

Parallel computation

Werkit supports parallel computation using Redis and RQ.

You must install the dependencies separately:

pip install redis rq

Requesting work

from mylib import myfunc
from werkit.parallel import invoke_for_each


items = {'a': ..., 'b': ...}
job_ids = invoke_for_each(myfunc, items, connection=Redis.from_url(...))

Performing work

pip install redis rq
rq worker --burst werkit-default --url rediss://...

Note: mylib.myfunc must be importable.

Using CloudManager

In place of the low-level API you can make your calls using CloudManager:

#!/usr/bin/env python


import click
from werkit.parallel import Config, CloudManager, invoke_for_each

manager = CloudManager(
    config=Config(
        local_repository="my-project",
        ecr_repository="123456789012.dkr.ecr.us-east-1.amazonaws.com/my-project",
        ecs_task_name="my-project",
        task_args=[
            "--cpu",
            "1024",
            "--memory",
            "2048",
            "--task-role",
            "arn:aws:iam::123456789012:role/...",
            "--security-group-id",
            "sg-...",
            "--subnet-id",
            "subnet-...",
        ],
        default_task_count=5,
    )
)


@click.group()
def cli():
    pass


@cli.command()
def login():
    manager.login()


@cli.command()
@click.argument("tag")
def build_and_push(tag):
    manager.build_and_push()


@cli.command()
def enqueue():
    from myproject import myfunc

    items = {"key1": "value1", "key2": "value2"}

    invoke_for_each(
        measure_body,
        items,
        clean=True,
        connection=manager.redis_connection,
    )


@cli.command()
@click.option(
    "--count",
    default=manager.config.default_task_count,
    type=int,
    help="Number of tasks to run",
)
@click.argument("tag")
def run(count, tag):
    manager.run(tag=tag, count=count)


@cli.command()
def dashboard():
    manager.dashboard()


@cli.command()
def ps():
    manager.ps()


@cli.command()
def get_results():
    print(manager.get_results())


@cli.command()
def clean():
    manager.clean()


if __name__ == "__main__":
    cli()

Getting results

from redis import Redis
from werkit.parallel import get_results


get_results(wait_until_done=True, connection=Redis.from_url(...))

Monitoring

You can monitor your queues using RQ Dashboard or one of the other methods outlined here.

Contribute

Pull requests welcome!

Support

If you are having issues, please let us know.

License

The project is licensed under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

werkit-0.3.3.tar.gz (7.2 kB view details)

Uploaded Source

File details

Details for the file werkit-0.3.3.tar.gz.

File metadata

  • Download URL: werkit-0.3.3.tar.gz
  • Upload date:
  • Size: 7.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.9.1 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/2.7.16

File hashes

Hashes for werkit-0.3.3.tar.gz
Algorithm Hash digest
SHA256 9fc0cf1c8ae74beddf0c6119aac790ef495937f4dc3a1d31fb180e64574ead30
MD5 0893863b31893c01baa5ac085761f75a
BLAKE2b-256 6325ad93c98b129018e14461c918832311e82c6ab90f5f2d06002722d8a8fdaf

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page