Skip to main content

Python access to WRDS Data

Project description

WRDS-Py is a library for extracting data from WRDS data sources and getting it into Pandas. The library allows users to access data from WRDS and extract data using SQL statements. The data that is returned is read into a Pandas data frame.

Installation

Using pip

The easiest way to install WRDS-Py on any supported platform is to use pip, the Python package manager, to install from the Python package index (pypi).

$ pip install wrds

Windows

WRDS-Py requires the Pandas and Psycopg2 Python packages. Binaries of these can be found here: http://www.lfd.uci.edu/~gohlke/pythonlibs/#psycopg

Once the two required packages are installed, use pip to install.

For more information please consult the WRDS Support section at https://wrds-web.wharton.upenn.edu/wrds/support/.

Usage

>>> import wrds
>>> db = wrds.Connection()
Enter your credentials.
Username: <your_username>
Password: <your_password>
>>> db.list_libraries()
['audit', 'bank', 'block', 'bvd', 'bvdtrial', 'cboe', ...]
>>> db.list_tables(library='crsp')
['aco_amda', 'aco_imda', 'aco_indfnta', 'aco_indfntq', ...]
>>> db.describe_table(library='crsp', table='stocknames')
Approximately 58957 rows in crsp.stocknames.
       name    nullable              type
0      permno      True  DOUBLE PRECISION
1      permco      True  DOUBLE PRECISION
2      namedt      True              DATE
...
>>> stocknames = db.get_table(library='crsp', table='stocknames', obs=10)
>>> stocknames.head()
   permno  permco      namedt   nameenddt     cusip    ncusip ticker  \
0  10000.0  7952.0  1986-01-07  1987-06-11  68391610  68391610  OMFGA
1  10001.0  7953.0  1986-01-09  1993-11-21  36720410  39040610   GFGC
2  10001.0  7953.0  1993-11-22  2008-02-04  36720410  29274A10   EWST
3  10001.0  7953.0  2008-02-05  2009-08-03  36720410  29274A20   EWST
4  10001.0  7953.0  2009-08-04  2009-12-17  36720410  29269V10   EGAS
>>> db.close()  # Close the connection to the database...
>>> with wrds.Connection() as db:  # You can use a context manager
...    stocknames = db.get_table(library='crsp', table='stocknames', obs=10)
>>> stocknames.head()
   permno  permco      namedt   nameenddt     cusip    ncusip ticker  \
0  10000.0  7952.0  1986-01-07  1987-06-11  68391610  68391610  OMFGA
1  10001.0  7953.0  1986-01-09  1993-11-21  36720410  39040610   GFGC
2  10001.0  7953.0  1993-11-22  2008-02-04  36720410  29274A10   EWST
3  10001.0  7953.0  2008-02-05  2009-08-03  36720410  29274A20   EWST
4  10001.0  7953.0  2009-08-04  2009-12-17  36720410  29269V10   EGAS

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wrds-3.1.0.tar.gz (12.7 kB view details)

Uploaded Source

Built Distribution

wrds-3.1.0-py3-none-any.whl (12.2 kB view details)

Uploaded Python 3

File details

Details for the file wrds-3.1.0.tar.gz.

File metadata

  • Download URL: wrds-3.1.0.tar.gz
  • Upload date:
  • Size: 12.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for wrds-3.1.0.tar.gz
Algorithm Hash digest
SHA256 331450c4532f09b2517e6ecb02326de8c3552ee501001d011241a573b211c324
MD5 f2ab75ecba48ceecff9f2f2ffa3bcd50
BLAKE2b-256 d9381ce82bed4dd56fab912699609aba78c24c319262aeadf1ea43fdd2fd1099

See more details on using hashes here.

File details

Details for the file wrds-3.1.0-py3-none-any.whl.

File metadata

  • Download URL: wrds-3.1.0-py3-none-any.whl
  • Upload date:
  • Size: 12.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for wrds-3.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 66418296c51d993584ace859da870d9e0f53d1c66c5ce1ae959f3307e016d211
MD5 dfdcb88e3a23bac01b5d19cdb7c1bb5e
BLAKE2b-256 780d470fd33c14980314e90faeed2182fec494679cea67a24731dae66bc39b9b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page