Skip to main content

Python access to WRDS Data

Project description

WRDS-Py is a library for extracting data from WRDS data sources and getting it into Pandas. The library allows users to access data from WRDS and extract data using SQL statements. The data that is returned is read into a Pandas data frame.

Installation

Using pip

The easiest way to install WRDS-Py on any supported platform is to use pip, the Python package manager, to install from the Python package index (pypi).

$ pip install wrds

Windows

WRDS-Py requires the Pandas and Psycopg2 Python packages. Binaries of these can be found here: http://www.lfd.uci.edu/~gohlke/pythonlibs/#psycopg

Once the two required packages are installed, use pip to install.

For more information please consult the WRDS Support section at https://wrds-web.wharton.upenn.edu/wrds/support/.

Usage

>>> import wrds
>>> db = wrds.Connection()
Enter your credentials.
Username: <your_username>
Password: <your_password>
>>> db.list_libraries()
['audit', 'bank', 'block', 'bvd', 'bvdtrial', 'cboe', ...]
>>> db.list_tables(library='crsp')
['aco_amda', 'aco_imda', 'aco_indfnta', 'aco_indfntq', ...]
>>> db.describe_table(library='crsp', table='stocknames')
Approximately 58957 rows in crsp.stocknames.
       name    nullable              type
0      permno      True  DOUBLE PRECISION
1      permco      True  DOUBLE PRECISION
2      namedt      True              DATE
...
>>> stocknames = db.get_table(library='crsp', table='stocknames', obs=10)
>>> stocknames.head()
   permno  permco      namedt   nameenddt     cusip    ncusip ticker  \
0  10000.0  7952.0  1986-01-07  1987-06-11  68391610  68391610  OMFGA
1  10001.0  7953.0  1986-01-09  1993-11-21  36720410  39040610   GFGC
2  10001.0  7953.0  1993-11-22  2008-02-04  36720410  29274A10   EWST
3  10001.0  7953.0  2008-02-05  2009-08-03  36720410  29274A20   EWST
4  10001.0  7953.0  2009-08-04  2009-12-17  36720410  29269V10   EGAS
>>> db.close()  # Close the connection to the database...
>>> with wrds.Connection() as db:  # You can use a context manager
...    stocknames = db.get_table(library='crsp', table='stocknames', obs=10)
>>> stocknames.head()
   permno  permco      namedt   nameenddt     cusip    ncusip ticker  \
0  10000.0  7952.0  1986-01-07  1987-06-11  68391610  68391610  OMFGA
1  10001.0  7953.0  1986-01-09  1993-11-21  36720410  39040610   GFGC
2  10001.0  7953.0  1993-11-22  2008-02-04  36720410  29274A10   EWST
3  10001.0  7953.0  2008-02-05  2009-08-03  36720410  29274A20   EWST
4  10001.0  7953.0  2009-08-04  2009-12-17  36720410  29269V10   EGAS

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wrds-3.1.1.tar.gz (12.7 kB view details)

Uploaded Source

Built Distribution

wrds-3.1.1-py3-none-any.whl (12.3 kB view details)

Uploaded Python 3

File details

Details for the file wrds-3.1.1.tar.gz.

File metadata

  • Download URL: wrds-3.1.1.tar.gz
  • Upload date:
  • Size: 12.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for wrds-3.1.1.tar.gz
Algorithm Hash digest
SHA256 0cfd5f36944635de7caa9d4895ab574ea3b036ca20e5dab62a81e2c04de8008a
MD5 413e4316bb06323db5fd74ac9dee7a5b
BLAKE2b-256 3c5e8835f4896db5c7d80c09c0e3f9a39ce3bb6f59db2ad3834bc6d7d4081b91

See more details on using hashes here.

File details

Details for the file wrds-3.1.1-py3-none-any.whl.

File metadata

  • Download URL: wrds-3.1.1-py3-none-any.whl
  • Upload date:
  • Size: 12.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for wrds-3.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 6786bc1f91174ce2941cd87f960f953223a00c447ddb65b9f5f49865e536a695
MD5 93879cdb64a172c26b39286d4095345e
BLAKE2b-256 f3bad07f34bba22d802100c227bc49a3928afe0e005066d8170bec57a83066e9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page