Skip to main content

Access WRDS data through PostgreSQL in Python.

Project description

WRDS-Py is a library for extracting data from WRDS data sources and getting it into Pandas. The library allows users to access data from WRDS and extract data using SQL statements. The data that is returned is read into a Pandas data frame.

Installation

For detailed information on installation of the module, please see PYTHON: From Your Computer (Jupyter/Spyder)

Using pip

The easiest way to install WRDS-Py on any supported platform is to use pip, the Python package manager, to install from the Python package index (pypi).

$ pip install wrds

Windows

WRDS-Py requires the Pandas and Psycopg2 Python packages. Binaries of these can be found here: http://www.lfd.uci.edu/~gohlke/pythonlibs/#psycopg

Once the two required packages are installed, use pip to install.

Usage

For detailed information on use of the module, please see Querying WRDS Data using Python

>>> import wrds
>>> db = wrds.Connection()
Enter your credentials.
Username: <your_username>
Password: <your_password>
>>> db.list_libraries()
['audit', 'bank', 'block', 'bvd', 'bvdtrial', 'cboe', ...]
>>> db.list_tables(library='crsp')
['aco_amda', 'aco_imda', 'aco_indfnta', 'aco_indfntq', ...]
>>> db.describe_table(library='crsp', table='stocknames')
Approximately 58957 rows in crsp.stocknames.
       name    nullable              type
0      permno      True  DOUBLE PRECISION
1      permco      True  DOUBLE PRECISION
2      namedt      True              DATE
...
>>> stocknames = db.get_table(library='crsp', table='stocknames', obs=10)
>>> stocknames.head()
   permno  permco      namedt   nameenddt     cusip    ncusip ticker  \
0  10000.0  7952.0  1986-01-07  1987-06-11  68391610  68391610  OMFGA
1  10001.0  7953.0  1986-01-09  1993-11-21  36720410  39040610   GFGC
2  10001.0  7953.0  1993-11-22  2008-02-04  36720410  29274A10   EWST
3  10001.0  7953.0  2008-02-05  2009-08-03  36720410  29274A20   EWST
4  10001.0  7953.0  2009-08-04  2009-12-17  36720410  29269V10   EGAS
>>> db.close()  # Close the connection to the database...
>>> with wrds.Connection() as db:  # You can use a context manager
...    stocknames = db.get_table(library='crsp', table='stocknames', obs=10)
>>> stocknames.head()
   permno  permco      namedt   nameenddt     cusip    ncusip ticker  \
0  10000.0  7952.0  1986-01-07  1987-06-11  68391610  68391610  OMFGA
1  10001.0  7953.0  1986-01-09  1993-11-21  36720410  39040610   GFGC
2  10001.0  7953.0  1993-11-22  2008-02-04  36720410  29274A10   EWST
3  10001.0  7953.0  2008-02-05  2009-08-03  36720410  29274A20   EWST
4  10001.0  7953.0  2009-08-04  2009-12-17  36720410  29269V10   EGAS

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wrds-3.1.5.tar.gz (16.0 kB view details)

Uploaded Source

Built Distribution

wrds-3.1.5-py3-none-any.whl (12.0 kB view details)

Uploaded Python 3

File details

Details for the file wrds-3.1.5.tar.gz.

File metadata

  • Download URL: wrds-3.1.5.tar.gz
  • Upload date:
  • Size: 16.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for wrds-3.1.5.tar.gz
Algorithm Hash digest
SHA256 4ebe6c14ee26cbf939c19d47961a3220833c881a0f3f7484b8257b0492261fdd
MD5 002cfd52ab7c274df35d6484c2e79612
BLAKE2b-256 6e85b2e5ab46a42e35559959ab164efb198be218e3f4bdd1425005e8367b7623

See more details on using hashes here.

File details

Details for the file wrds-3.1.5-py3-none-any.whl.

File metadata

  • Download URL: wrds-3.1.5-py3-none-any.whl
  • Upload date:
  • Size: 12.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for wrds-3.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 d9863762dbd1b3a8bec0d67f4e89c2bbf712248deaf8d17edaff427ecd55abfb
MD5 886ef7b8c730a2acfbf0814a39d35728
BLAKE2b-256 e4c116ff5ed59764978f4904fc5c683f7b987d9133f2c8219b83ff71c18df9ee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page