Skip to main content

Access WRDS data through PostgreSQL in Python.

Project description

WRDS-Py is a library for extracting data from WRDS data sources and getting it into Pandas. The library allows users to access data from WRDS and extract data using SQL statements. The data that is returned is read into a Pandas data frame.

Installation

For detailed information on installation of the module, please see PYTHON: From Your Computer (Jupyter/Spyder)

Using pip

The easiest way to install WRDS-Py on any supported platform is to use pip, the Python package manager, to install from the Python package index (pypi).

$ pip install wrds

Windows

WRDS-Py requires the Pandas and Psycopg2 Python packages. Binaries of these can be found here: http://www.lfd.uci.edu/~gohlke/pythonlibs/#psycopg

Once the two required packages are installed, use pip to install.

Usage

For detailed information on use of the module, please see Querying WRDS Data using Python

>>> import wrds
>>> db = wrds.Connection()
Enter your credentials.
Username: <your_username>
Password: <your_password>
>>> db.list_libraries()
['audit', 'bank', 'block', 'bvd', 'bvdtrial', 'cboe', ...]
>>> db.list_tables(library='crsp')
['aco_amda', 'aco_imda', 'aco_indfnta', 'aco_indfntq', ...]
>>> db.describe_table(library='crsp', table='stocknames')
Approximately 58957 rows in crsp.stocknames.
       name    nullable              type
0      permno      True  DOUBLE PRECISION
1      permco      True  DOUBLE PRECISION
2      namedt      True              DATE
...
>>> stocknames = db.get_table(library='crsp', table='stocknames', obs=10)
>>> stocknames.head()
   permno  permco      namedt   nameenddt     cusip    ncusip ticker  \
0  10000.0  7952.0  1986-01-07  1987-06-11  68391610  68391610  OMFGA
1  10001.0  7953.0  1986-01-09  1993-11-21  36720410  39040610   GFGC
2  10001.0  7953.0  1993-11-22  2008-02-04  36720410  29274A10   EWST
3  10001.0  7953.0  2008-02-05  2009-08-03  36720410  29274A20   EWST
4  10001.0  7953.0  2009-08-04  2009-12-17  36720410  29269V10   EGAS
>>> db.close()  # Close the connection to the database...
>>> with wrds.Connection() as db:  # You can use a context manager
...    stocknames = db.get_table(library='crsp', table='stocknames', obs=10)
>>> stocknames.head()
   permno  permco      namedt   nameenddt     cusip    ncusip ticker  \
0  10000.0  7952.0  1986-01-07  1987-06-11  68391610  68391610  OMFGA
1  10001.0  7953.0  1986-01-09  1993-11-21  36720410  39040610   GFGC
2  10001.0  7953.0  1993-11-22  2008-02-04  36720410  29274A10   EWST
3  10001.0  7953.0  2008-02-05  2009-08-03  36720410  29274A20   EWST
4  10001.0  7953.0  2009-08-04  2009-12-17  36720410  29269V10   EGAS

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wrds-3.1.6.tar.gz (16.3 kB view details)

Uploaded Source

Built Distribution

wrds-3.1.6-py3-none-any.whl (12.4 kB view details)

Uploaded Python 3

File details

Details for the file wrds-3.1.6.tar.gz.

File metadata

  • Download URL: wrds-3.1.6.tar.gz
  • Upload date:
  • Size: 16.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for wrds-3.1.6.tar.gz
Algorithm Hash digest
SHA256 60d44603d47f6c6cceaafa0c0259cd20eec9148e51ec6d0d313592d977ebd89f
MD5 90f1791f55e6e2845676ed4de14f998a
BLAKE2b-256 18621cc164692c21c9c6b498fa0ec84f6c83287cdc16c74ba8f430e5abc1dc93

See more details on using hashes here.

File details

Details for the file wrds-3.1.6-py3-none-any.whl.

File metadata

  • Download URL: wrds-3.1.6-py3-none-any.whl
  • Upload date:
  • Size: 12.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for wrds-3.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 d44921d47bc76571c524f10c7896da74ee9cc81e4ef59ca353ddcf690003f147
MD5 7213ec8b27be98f975860550f450d4c3
BLAKE2b-256 362b64986e5a8911fd1c51cbb2e8ae8367970baf52f420ec31787dc9118ed4bd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page