Skip to main content

xarray Datasets from CASA Tables.

Project description

https://img.shields.io/pypi/v/xarray-ms.svg https://img.shields.io/travis/ska-sa/xarray-ms.svg Documentation Status

Constructs xarray Datasets from CASA Tables via python-casacore. The DataArrays contained in the Dataset are dask arrays backed by deferred calls to pyrap.tables.table.getcol.

Supports writing DataArrays back to the respective column in the Table.

The intention behind this package is to support the Measurement Set as a data source and sink for the purposes of writing parallel, distributed Radio Astronomy algorithms.

import dask.array as da
from xarrayms import xds_from_table, xds_to_table

# Create xarray dataset from Measurement Set "WSRT.MS"
ds = xds_from_table("WSRT.MS")
# Set the flag DataArray to it's inverse
ds['flag'] = (ds.flag.dims, da.logical_not(ds.flag))
# Write the flag column back to the Measurement Set
xds_to_table(ds, "WSRT.MS", "FLAG").compute()

print ds

<xarray.Dataset>
Dimensions:         ((u,v,w): 3, chan: 64, corr: 4, row: 6552, table_row: 6552)
Coordinates:
  * row             (row) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ...
  * table_row       (table_row) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
Dimensions without coordinates: (u,v,w), chan, corr
Data variables:
    ANTENNA1        (row) int32 dask.array<shape=(6552,), chunksize=(1000,)>
    ANTENNA2        (row) int32 dask.array<shape=(6552,), chunksize=(1000,)>
    ARRAY_ID        (row) int32 dask.array<shape=(6552,), chunksize=(1000,)>
    CORRECTED_DATA  (row, chan, corr) complex64 dask.array<shape=(6552, 64, 4), chunksize=(1000, 64, 4)>
    DATA            (row, chan, corr) complex64 dask.array<shape=(6552, 64, 4), chunksize=(1000, 64, 4)>
    EXPOSURE        (row) float64 dask.array<shape=(6552,), chunksize=(1000,)>
    FEED1           (row) int32 dask.array<shape=(6552,), chunksize=(1000,)>
    FEED2           (row) int32 dask.array<shape=(6552,), chunksize=(1000,)>
    FLAG            (row, chan, corr) bool dask.array<shape=(6552, 64, 4), chunksize=(1000, 64, 4)>
    FLAG_ROW        (row) bool dask.array<shape=(6552,), chunksize=(1000,)>
    IMAGING_WEIGHT  (row, chan) float32 dask.array<shape=(6552, 64), chunksize=(1000, 64)>
    INTERVAL        (row) float64 dask.array<shape=(6552,), chunksize=(1000,)>
    MODEL_DATA      (row, chan, corr) complex64 dask.array<shape=(6552, 64, 4), chunksize=(1000, 64, 4)>
    OBSERVATION_ID  (row) int32 dask.array<shape=(6552,), chunksize=(1000,)>
    PROCESSOR_ID    (row) int32 dask.array<shape=(6552,), chunksize=(1000,)>
    SCAN_NUMBER     (row) int32 dask.array<shape=(6552,), chunksize=(1000,)>
    SIGMA           (row, corr) float32 dask.array<shape=(6552, 4), chunksize=(1000, 4)>
    STATE_ID        (row) int32 dask.array<shape=(6552,), chunksize=(1000,)>
    TIME            (row) float64 dask.array<shape=(6552,), chunksize=(1000,)>
    TIME_CENTROID   (row) float64 dask.array<shape=(6552,), chunksize=(1000,)>
    UVW             (row, (u,v,w)) float64 dask.array<shape=(6552, 3), chunksize=(1000, 3)>
    WEIGHT          (row, corr) float32 dask.array<shape=(6552, 4), chunksize=(1000, 4)>
Attributes:
    FIELD_ID:      0
    DATA_DESC_ID:  0

Documentation

https://xarray-ms.readthedocs.io.

Limitations

  1. Many Measurement Sets columns are defined as variably shaped, but the actual data is fixed. xarray-ms will infer the shape of the data from the first row and must be consistent with that of other rows. For example, this may be issue where multiple Spectral Windows are present in the Measurement Set with differing channels per SPW.

    xarray-ms works around this by partitioning the Measurement Set into multiple datasets. The first row’s shape is used to infer the shape of the partition. Thus, in the case of multiple Spectral Window’s, we can partition the Measurement Set by DATA_DESC_ID to create a dataset for each Spectral Window.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

xarray_ms-0.1.5-py2.py3-none-any.whl (28.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file xarray_ms-0.1.5-py2.py3-none-any.whl.

File metadata

  • Download URL: xarray_ms-0.1.5-py2.py3-none-any.whl
  • Upload date:
  • Size: 28.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.7

File hashes

Hashes for xarray_ms-0.1.5-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 9a345cf37df0dde52300d76b573fcb4083247c4390c760d00d773b2f8f71b545
MD5 89e1ce2c2fea7ae3c625f501ddafbf12
BLAKE2b-256 efd78b86596553bfdb090b1f92c2bca6fd2872b70623fc1cd168e47f72c8ffd0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page