Skip to main content

xarray Datasets from CASA Tables.

Project description

https://img.shields.io/pypi/v/xarray-ms.svg https://img.shields.io/travis/ska-sa/xarray-ms.svg Documentation Status

Constructs xarray Datasets from CASA Tables via python-casacore. The DataArrays contained in the Dataset are dask arrays backed by deferred calls to pyrap.tables.table.getcol.

Supports writing DataArrays back to the respective column in the Table.

The intention behind this package is to support the Measurement Set as a data source and sink for the purposes of writing parallel, distributed Radio Astronomy algorithms.

import dask.array as da
from xarrayms import xds_from_table, xds_to_table

# Create xarray dataset from Measurement Set "WSRT.MS"
ds = xds_from_table("WSRT.MS")
# Set the flag DataArray to it's inverse
ds['flag'] = (ds.flag.dims, da.logical_not(ds.flag))
# Write the flag column back to the Measurement Set
xds_to_table(ds, "WSRT.MS", "FLAG").compute()

print ds

<xarray.Dataset>
Dimensions:         ((u,v,w): 3, chan: 64, corr: 4, row: 6552, table_row: 6552)
Coordinates:
  * row             (row) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ...
  * table_row       (table_row) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
Dimensions without coordinates: (u,v,w), chan, corr
Data variables:
    ANTENNA1        (row) int32 dask.array<shape=(6552,), chunksize=(1000,)>
    ANTENNA2        (row) int32 dask.array<shape=(6552,), chunksize=(1000,)>
    ARRAY_ID        (row) int32 dask.array<shape=(6552,), chunksize=(1000,)>
    CORRECTED_DATA  (row, chan, corr) complex64 dask.array<shape=(6552, 64, 4), chunksize=(1000, 64, 4)>
    DATA            (row, chan, corr) complex64 dask.array<shape=(6552, 64, 4), chunksize=(1000, 64, 4)>
    EXPOSURE        (row) float64 dask.array<shape=(6552,), chunksize=(1000,)>
    FEED1           (row) int32 dask.array<shape=(6552,), chunksize=(1000,)>
    FEED2           (row) int32 dask.array<shape=(6552,), chunksize=(1000,)>
    FLAG            (row, chan, corr) bool dask.array<shape=(6552, 64, 4), chunksize=(1000, 64, 4)>
    FLAG_ROW        (row) bool dask.array<shape=(6552,), chunksize=(1000,)>
    IMAGING_WEIGHT  (row, chan) float32 dask.array<shape=(6552, 64), chunksize=(1000, 64)>
    INTERVAL        (row) float64 dask.array<shape=(6552,), chunksize=(1000,)>
    MODEL_DATA      (row, chan, corr) complex64 dask.array<shape=(6552, 64, 4), chunksize=(1000, 64, 4)>
    OBSERVATION_ID  (row) int32 dask.array<shape=(6552,), chunksize=(1000,)>
    PROCESSOR_ID    (row) int32 dask.array<shape=(6552,), chunksize=(1000,)>
    SCAN_NUMBER     (row) int32 dask.array<shape=(6552,), chunksize=(1000,)>
    SIGMA           (row, corr) float32 dask.array<shape=(6552, 4), chunksize=(1000, 4)>
    STATE_ID        (row) int32 dask.array<shape=(6552,), chunksize=(1000,)>
    TIME            (row) float64 dask.array<shape=(6552,), chunksize=(1000,)>
    TIME_CENTROID   (row) float64 dask.array<shape=(6552,), chunksize=(1000,)>
    UVW             (row, (u,v,w)) float64 dask.array<shape=(6552, 3), chunksize=(1000, 3)>
    WEIGHT          (row, corr) float32 dask.array<shape=(6552, 4), chunksize=(1000, 4)>
Attributes:
    FIELD_ID:      0
    DATA_DESC_ID:  0

Documentation

https://xarray-ms.readthedocs.io.

Limitations

  1. Many Measurement Sets columns are defined as variably shaped, but the actual data is fixed. xarray-ms will infer the shape of the data from the first row and must be consistent with that of other rows. For example, this may be issue where multiple Spectral Windows are present in the Measurement Set with differing channels per SPW.

    xarray-ms works around this by partitioning the Measurement Set into multiple datasets. The first row’s shape is used to infer the shape of the partition. Thus, in the case of multiple Spectral Window’s, we can partition the Measurement Set by DATA_DESC_ID to create a dataset for each Spectral Window.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xarray-ms-0.1.7.tar.gz (33.7 kB view details)

Uploaded Source

Built Distribution

xarray_ms-0.1.7-py2.py3-none-any.whl (28.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file xarray-ms-0.1.7.tar.gz.

File metadata

  • Download URL: xarray-ms-0.1.7.tar.gz
  • Upload date:
  • Size: 33.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.6.3

File hashes

Hashes for xarray-ms-0.1.7.tar.gz
Algorithm Hash digest
SHA256 1a9436523eda0bb469c6be01019b81a1b5ad5b6eafb32ced3e4f29ea6fa57c8b
MD5 8d399640d3f2c8ee97f62da768ab98fb
BLAKE2b-256 23146af4fb132bd1f73fc243054ff404f6c5e69a3a89e777b796538728fc6f89

See more details on using hashes here.

File details

Details for the file xarray_ms-0.1.7-py2.py3-none-any.whl.

File metadata

  • Download URL: xarray_ms-0.1.7-py2.py3-none-any.whl
  • Upload date:
  • Size: 28.9 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.6.3

File hashes

Hashes for xarray_ms-0.1.7-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 84e4171a16ebeea803fe9074fb8862da27eaa8b222584303600134430fd2bf82
MD5 bad08e3562fd4aa66f9e3d0d478cf9c5
BLAKE2b-256 9b69499d0306f147cb43b026d9f3ae9ff745b3430977edae7739773334e8137a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page