generic framework and xarray extension for computer model simulations
Project description
xarray-simlab is a Python library that provides both a generic framework for building computational models in a modular fashion and a xarray extension for setting and running simulations using the xarray’s Dataset structure. It is designed for fast, interactive and exploratory modeling.
xarray-simlab is well integrated with other libraries of the PyData ecosystem such as dask and zarr.
In a nutshell
The Conway’s Game of Life example shown below is adapted from this blog post by Jake VanderPlas.
Create new model components by writing compact Python classes, i.e., very much like dataclasses:
import numpy as np
import xsimlab as xs
@xs.process
class GameOfLife:
world = xs.variable(
dims=('x', 'y'), intent='inout', encoding={'fill_value': None}
)
def run_step(self):
nbrs_count = sum(
np.roll(np.roll(self.world, i, 0), j, 1)
for i in (-1, 0, 1) for j in (-1, 0, 1)
if (i != 0 or j != 0)
)
self._world_next = (nbrs_count == 3) | (self.world & (nbrs_count == 2))
def finalize_step(self):
self.world[:] = self._world_next
@xs.process
class Glider:
pos = xs.variable(dims='point_xy', description='glider position')
world = xs.foreign(GameOfLife, 'world', intent='out')
def initialize(self):
x, y = self.pos
kernel = [[1, 0, 0],
[0, 1, 1],
[1, 1, 0]]
self.world = np.zeros((10, 10), dtype=bool)
self.world[x:x+3, y:y+3] = kernel
Create a new model just by providing a dictionary of model components:
model = xs.Model({'gol': GameOfLife,
'init': Glider})
Create an input xarray.Dataset, run the model and get an output xarray.Dataset:
input_dataset = xs.create_setup(
model=model,
clocks={'step': np.arange(9)},
input_vars={'init__pos': ('point_xy', [4, 5])},
output_vars={'gol__world': 'step'}
)
output_dataset = input_dataset.xsimlab.run(model=model)
>>> output_dataset
<xarray.Dataset>
Dimensions: (point_xy: 2, step: 9, x: 10, y: 10)
Coordinates:
* step (step) int64 0 1 2 3 4 5 6 7 8
Dimensions without coordinates: point_xy, x, y
Data variables:
init__pos (point_xy) int64 4 5
gol__world (step, x, y) bool False False False False ... False False False
Perform model setup, pre-processing, run, post-processing and visualization in a functional style, using method chaining:
import matplotlib.pyplot as plt
with model:
(input_dataset
.xsimlab.update_vars(
input_vars={'init__pos': ('point_xy', [2, 2])}
)
.xsimlab.run()
.gol__world.plot.imshow(
col='step', col_wrap=3, figsize=(5, 5),
xticks=[], yticks=[],
add_colorbar=False, cmap=plt.cm.binary)
)
Documentation
Documentation is hosted on ReadTheDocs: http://xarray-simlab.readthedocs.io
License
3-clause (“Modified” or “New”) BSD license, see License file.
xarray-simlab uses short parts of the code of the xarray, pandas and dask libraries. Their licenses are reproduced in the “licenses” directory.
Acknowledgment
This project is supported by the Earth Surface Process Modelling group of the GFZ Helmholtz Centre Potsdam.
Citation
If you use xarray-simlab in a scientific publication, we would appreciate a citation.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file xarray-simlab-0.5.0.tar.gz
.
File metadata
- Download URL: xarray-simlab-0.5.0.tar.gz
- Upload date:
- Size: 146.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.9.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 92de9fbd55e045b0d0eacbc7334a86108ecd5376973b1ed20b600bbc6521c2d6 |
|
MD5 | 40b205ad84feb0b86386e3169ebe61d1 |
|
BLAKE2b-256 | 5bc3ea7ae075a27ee1bd6bb7995de77c7ac7132e34ca6e611a038ef28d8c78e2 |
Provenance
File details
Details for the file xarray_simlab-0.5.0-py3-none-any.whl
.
File metadata
- Download URL: xarray_simlab-0.5.0-py3-none-any.whl
- Upload date:
- Size: 85.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.9.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 708e988baf393299b74720f28af364f50cb29449196c3bbd85812decb58d5bd9 |
|
MD5 | 72d4da3baaa85dbc2c101be90b9f94c1 |
|
BLAKE2b-256 | c52372de6ab41634968a54af3a6dc2b9d6318425a07872c09e8c12a020685b1e |