Skip to main content

generic framework and xarray extension for computer model simulations

Project description

Build Status Coverage Status Documentation Status Citation

xarray-simlab is a Python library that provides both a generic framework for building computational models in a modular fashion and a xarray extension for setting and running simulations using the xarray’s Dataset structure. It is designed for fast, interactive and exploratory modeling.

xarray-simlab is well integrated with other libraries of the PyData ecosystem such as dask and zarr.

In a nutshell

The Conway’s Game of Life example shown below is adapted from this blog post by Jake VanderPlas.

  1. Create new model components by writing compact Python classes, i.e., very much like dataclasses:

import numpy as np
import xsimlab as xs

@xs.process
class GameOfLife:
    world = xs.variable(dims=('x', 'y'), intent='inout')

    def run_step(self):
        nbrs_count = sum(
            np.roll(np.roll(self.world, i, 0), j, 1)
            for i in (-1, 0, 1) for j in (-1, 0, 1)
            if (i != 0 or j != 0)
        )
        self._world_next = (nbrs_count == 3) | (self.world & (nbrs_count == 2))

    def finalize_step(self):
        self.world[:] = self._world_next


@xs.process
class Glider:
    pos = xs.variable(dims='point_xy', description='glider position')
    world = xs.foreign(GameOfLife, 'world', intent='out')

    def initialize(self):
        x, y = self.pos

        kernel = [[1, 0, 0],
                  [0, 1, 1],
                  [1, 1, 0]]

        self.world = np.zeros((10, 10), dtype=bool)
        self.world[x:x+3, y:y+3] = kernel
  1. Create a new model just by providing a dictionary of model components:

model = xs.Model({'gol': GameOfLife,
                  'init': Glider})
  1. Create an input xarray.Dataset, run the model and get an output xarray.Dataset:

input_dataset = xs.create_setup(
    model=model,
    clocks={'step': np.arange(9)},
    input_vars={'init__pos': ('point_xy', [4, 5])},
    output_vars={'gol__world': 'step'}
)

output_dataset = input_dataset.xsimlab.run(model=model)
>>> output_dataset
<xarray.Dataset>
Dimensions:     (point_xy: 2, step: 9, x: 10, y: 10)
Coordinates:
  * step        (step) int64 0 1 2 3 4 5 6 7 8
Dimensions without coordinates: point_xy, x, y
Data variables:
    init__pos   (point_xy) int64 4 5
    gol__world  (step, x, y) bool False False False False ... False False False
  1. Perform model setup, pre-processing, run, post-processing and visualization in a functional style, using method chaining:

import matplotlib.pyplot as plt

with model:
    (input_dataset
     .xsimlab.update_vars(
         input_vars={'init__pos': ('point_xy', [2, 2])}
     )
     .xsimlab.run()
     .gol__world.plot.imshow(
         col='step', col_wrap=3, figsize=(5, 5),
         xticks=[], yticks=[],
         add_colorbar=False, cmap=plt.cm.binary)
    )
doc/_static/gol.png

Documentation

Documentation is hosted on ReadTheDocs: http://xarray-simlab.readthedocs.io

License

3-clause (“Modified” or “New”) BSD license, see License file.

xarray-simlab uses short parts of the code of the xarray, pandas and dask libraries. Their licenses are reproduced in the “licenses” directory.

Acknowledgment

This project is supported by the Earth Surface Process Modelling group of the GFZ Helmholtz Centre Potsdam.

Citation

If you use xarray-simlab in a scientific publication, we would appreciate a citation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xarray-simlab-v0.4.0.tar.gz (130.0 kB view details)

Uploaded Source

Built Distribution

xarray_simlab-0.4.0-py3-none-any.whl (73.5 kB view details)

Uploaded Python 3

File details

Details for the file xarray-simlab-v0.4.0.tar.gz.

File metadata

  • Download URL: xarray-simlab-v0.4.0.tar.gz
  • Upload date:
  • Size: 130.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0.post20200311 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.3

File hashes

Hashes for xarray-simlab-v0.4.0.tar.gz
Algorithm Hash digest
SHA256 483411665b3a2fba55800d672d82f8d22304581ff94fb0c2ebdc9386ba5d3747
MD5 00f0a5269b10b7fd02b77272001d730e
BLAKE2b-256 f944bb6eaec775c3247816a0ff39c2ae48f8535ef318d630a3f28b5c8a842460

See more details on using hashes here.

File details

Details for the file xarray_simlab-0.4.0-py3-none-any.whl.

File metadata

  • Download URL: xarray_simlab-0.4.0-py3-none-any.whl
  • Upload date:
  • Size: 73.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0.post20200311 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.3

File hashes

Hashes for xarray_simlab-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e615d468c5c5b50115aea6fb9073f1ec909cfbd9b918603c3f3e0325c82ae62c
MD5 6d4a63c091728c493d66f03d69914bde
BLAKE2b-256 069b021912ab11288aa007132f7a1b7db4c1aea1567a0b1718c6b928eb89fae1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page