Skip to main content

generic framework and xarray extension for computer model simulations

Project description

Build Status Coverage Status Documentation Status Citation

xarray-simlab is a Python library that provides both a generic framework for building computational models in a modular fashion and a xarray extension for setting and running simulations using the xarray’s Dataset structure. It is designed for fast, interactive and exploratory modeling.

xarray-simlab is well integrated with other libraries of the PyData ecosystem such as dask and zarr.

In a nutshell

The Conway’s Game of Life example shown below is adapted from this blog post by Jake VanderPlas.

  1. Create new model components by writing compact Python classes, i.e., very much like dataclasses:

import numpy as np
import xsimlab as xs

@xs.process
class GameOfLife:
    world = xs.variable(dims=('x', 'y'), intent='inout')

    def run_step(self):
        nbrs_count = sum(
            np.roll(np.roll(self.world, i, 0), j, 1)
            for i in (-1, 0, 1) for j in (-1, 0, 1)
            if (i != 0 or j != 0)
        )
        self._world_next = (nbrs_count == 3) | (self.world & (nbrs_count == 2))

    def finalize_step(self):
        self.world[:] = self._world_next


@xs.process
class Glider:
    pos = xs.variable(dims='point_xy', description='glider position')
    world = xs.foreign(GameOfLife, 'world', intent='out')

    def initialize(self):
        x, y = self.pos

        kernel = [[1, 0, 0],
                  [0, 1, 1],
                  [1, 1, 0]]

        self.world = np.zeros((10, 10), dtype=bool)
        self.world[x:x+3, y:y+3] = kernel
  1. Create a new model just by providing a dictionary of model components:

model = xs.Model({'gol': GameOfLife,
                  'init': Glider})
  1. Create an input xarray.Dataset, run the model and get an output xarray.Dataset:

input_dataset = xs.create_setup(
    model=model,
    clocks={'step': np.arange(9)},
    input_vars={'init__pos': ('point_xy', [4, 5])},
    output_vars={'gol__world': 'step'}
)

output_dataset = input_dataset.xsimlab.run(model=model)
>>> output_dataset
<xarray.Dataset>
Dimensions:     (point_xy: 2, step: 9, x: 10, y: 10)
Coordinates:
  * step        (step) int64 0 1 2 3 4 5 6 7 8
Dimensions without coordinates: point_xy, x, y
Data variables:
    init__pos   (point_xy) int64 4 5
    gol__world  (step, x, y) bool False False False False ... False False False
  1. Perform model setup, pre-processing, run, post-processing and visualization in a functional style, using method chaining:

import matplotlib.pyplot as plt

with model:
    (input_dataset
     .xsimlab.update_vars(
         input_vars={'init__pos': ('point_xy', [2, 2])}
     )
     .xsimlab.run()
     .gol__world.plot.imshow(
         col='step', col_wrap=3, figsize=(5, 5),
         xticks=[], yticks=[],
         add_colorbar=False, cmap=plt.cm.binary)
    )
doc/_static/gol.png

Documentation

Documentation is hosted on ReadTheDocs: http://xarray-simlab.readthedocs.io

License

3-clause (“Modified” or “New”) BSD license, see License file.

xarray-simlab uses short parts of the code of the xarray, pandas and dask libraries. Their licenses are reproduced in the “licenses” directory.

Acknowledgment

This project is supported by the Earth Surface Process Modelling group of the GFZ Helmholtz Centre Potsdam.

Citation

If you use xarray-simlab in a scientific publication, we would appreciate a citation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xarray-simlab-0.4.1.tar.gz (132.9 kB view details)

Uploaded Source

Built Distribution

xarray_simlab-0.4.1-py3-none-any.whl (75.9 kB view details)

Uploaded Python 3

File details

Details for the file xarray-simlab-0.4.1.tar.gz.

File metadata

  • Download URL: xarray-simlab-0.4.1.tar.gz
  • Upload date:
  • Size: 132.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200325 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.3

File hashes

Hashes for xarray-simlab-0.4.1.tar.gz
Algorithm Hash digest
SHA256 5ad9f93b53ab27c4084d50ad5deda8c7044a9911af7735384b5c3da2c054bc15
MD5 fc5ba94ddd1e113a7a92d077cd037708
BLAKE2b-256 58dd341d4a7225d27fd2b9e80e0e97c92d23226396990979aafe2b60bcfba631

See more details on using hashes here.

File details

Details for the file xarray_simlab-0.4.1-py3-none-any.whl.

File metadata

  • Download URL: xarray_simlab-0.4.1-py3-none-any.whl
  • Upload date:
  • Size: 75.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200325 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.3

File hashes

Hashes for xarray_simlab-0.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 06b52ae1bbe035dee273a7aa45e1ef11622ff8c549f7678e4111efcf795776b4
MD5 a8196cbc1b8dcc8418b68ec79a699f24
BLAKE2b-256 02a34e92e7b1014e6287fbf5b1af4359c7807e0bf640e98056c5365f9cc4e2d0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page