Skip to main content

Python bindings to the flandmark keypoint localization library

Project description

This package is a simple Boost.Python wrapper to the (rather quick) open-source facial landmark detector flandmark, version 1.0.7 (or the github state as of 10/february/2013). If you use this package, the author asks you to cite the following paper:

@inproceedings{Uricar-Franc-Hlavac-VISAPP-2012,
  author =      {U{\\v{r}}i{\\v{c}}{\\'{a}}{\\v{r}}, Michal and Franc, Vojt{\\v{e}}ch and Hlav{\\'{a}}{\\v{c}}, V{\\'{a}}clav},
  title =       {Detector of Facial Landmarks Learned by the Structured Output {SVM}},
  year =        {2012},
  pages =       {547-556},
  booktitle =   {VISAPP '12: Proceedings of the 7th International Conference on Computer Vision Theory and Applications},
  editor =      {Csurka, Gabriela and Braz, Jos{\'{e}}},
  publisher =   {SciTePress --- Science and Technology Publications},
  address =     {Portugal},
  volume =      {1},
  isbn =        {978-989-8565-03-7},
  book_pages =  {747},
  month =       {February},
  day =         {24-26},
  venue =       {Rome, Italy},
  keywords =    {Facial Landmark Detection, Structured Output Classification, Support Vector Machines, Deformable Part Models},
  prestige =    {important},
  authorship =  {50-40-10},
  status =      {published},
  project =     {FP7-ICT-247525 HUMAVIPS, PERG04-GA-2008-239455 SEMISOL, Czech Ministry of Education project 1M0567},
  www = {http://www.visapp.visigrapp.org},
}

You should also cite Bob, as a core framework:

@inproceedings{Anjos_ACMMM_2012,
  author = {A. Anjos AND L. El Shafey AND R. Wallace AND M. G\"unther AND C. McCool AND S. Marcel},
  title = {Bob: a free signal processing and machine learning toolbox for researchers},
  year = {2012},
  month = oct,
  booktitle = {20th ACM Conference on Multimedia Systems (ACMMM), Nara, Japan},
  publisher = {ACM Press},
  url = {http://publications.idiap.ch/downloads/papers/2012/Anjos_Bob_ACMMM12.pdf},
}

Installation

You can just add a dependence for xbob.flandmark on your setup.py to automatically download and have this package available at your satellite package. This works well if Bob is installed centrally at your machine.

Otherwise, you will need to tell buildout how to build the package locally and how to find Bob. For that, just add a custom egg recipe to your buildout that will fetch the package and compile it locally, setting the buildout variable prefixes to where Bob is installed (a build directory will work as well). For example:

[buildout]
parts = flandmark <other parts here...>
...
prefixes = /Users/andre/work/bob/build/debug

...

[flandmark]
recipe = xbob.buildout:develop

...

Development

To develop these bindings, you will need the open-source library Bob installed somewhere. At least version 1.1 of Bob is required. If you have compiled Bob yourself and installed it on a non-standard location, you will need to note down the path leading to the root of that installation.

Just type:

$ python bootstrap.py
$ ./bin/buildout

If Bob is installed in a non-standard location, edit the file buildout.cfg to set the root to Bob’s local installation path. Remember to use the same python interpreter that was used to compile Bob, then execute the same steps as above.

Usage

Pretty simple, just do something like:

import bob
from xbob import flandmark

video = bob.io.VideoReader('myvideo.avi')
localize = flandmark.Localizer()

for frame in video:
  print localize(frame)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xbob.flandmark-1.0.9.zip (2.1 MB view details)

Uploaded Source

File details

Details for the file xbob.flandmark-1.0.9.zip.

File metadata

  • Download URL: xbob.flandmark-1.0.9.zip
  • Upload date:
  • Size: 2.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for xbob.flandmark-1.0.9.zip
Algorithm Hash digest
SHA256 4f50e4a3cf9bd71fb4d02604f6fb05db29293fddd192d71ef2663b7b5a94a562
MD5 3d7e777e526aa85c42f6e56b8e28a4d5
BLAKE2b-256 4ffd1c74e07758b8bbf81711b7346cb4e243a3f53977021476542c645acfe730

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page