Skip to main content

Logging Utility for ML Experiments

Project description

CircleCI PyPI - License PyPI - Python Version Code style: black

xplogger

Logging utility for ML experiments

Why

People use different tools for logging experimental results - Tensorboard, Wandb etc to name a few. Working with different collaborators, I will have to switch my logging tool with each new project. So I made this simple tool that provides a common interface to logging results to different loggers.

Installation

  • pip install "xplogger[all]"

If you want to use only the filesystem logger, use pip install "xplogger"

Install from source

  • git clone git@github.com:shagunsodhani/xplogger.git
  • cd xplogger
  • pip install ".[all]"

Alternatively, pip install "git+https://git@github.com/shagunsodhani/xplogger.git@master#egg=xplogger[all]"

If you want to use only the filesystem logger, use pip install . or pip install "git+https://git@github.com/shagunsodhani/xplogger.git@master#egg=xplogger".

Documentation

https://shagunsodhani.github.io/xplogger

Use

  • Make a logbook_config:

    from xplogger import logbook
    logbook_config = logbook.make_config(
        logger_dir = <path to write logs>,
        wandb_config = <wandb config or None>,
        tensorboard_config = <tensorboard config or None>,
        mlflow_config = <mlflow config or None>)
    

    The API for make_config can be accessed here.

  • Make a LogBook instance:

    logbook = logbook.LogBook(config = logbook_config)
    
  • Use the logbook instance:

    log = {
        "epoch": 1,
        "loss": 0.1,
        "accuracy": 0.2
    }
    logbook.write_metric(log)
    

    The API for write_metric can be accessed here.

Note

  • If you are writing to wandb, the log must have a key called step. If your log already captures the step but as a different key (say epoch), you can pass the wandb_key_map argument (set as {epoch: step}). For more details, refer the documentation here.

  • If you are writing to mlflow, the log must have a key called step. If your log already captures the step but as a different key (say epoch), you can pass the mlflow_key_map argument (set as {epoch: step}). For more details, refer the documentation here.

  • If you are writing to tensorboard, the log must have a key called main_tag or tag which acts as the data Identifier and another key called global_step. These keys are described here. If your log already captures these values but as different key (say mode for main_tag and epoch for global_step), you can pass the tensorboard_key_map argument (set as {mode: main_tag, epoch: global_step}). For more details, refer the documentation here.

Dev Setup

  • pip install -e ".[dev]"
  • Install pre-commit hooks pre-commit install
  • The code is linted using:
    • black
    • flake8
    • mypy
    • isort
  • Tests can be run locally using nox

Acknowledgements

  • Config for circleci, pre-commit, mypy etc are borrowed/modified from Hydra

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xplogger-0.7.tar.gz (19.2 kB view details)

Uploaded Source

Built Distribution

xplogger-0.7-py3-none-any.whl (25.9 kB view details)

Uploaded Python 3

File details

Details for the file xplogger-0.7.tar.gz.

File metadata

  • Download URL: xplogger-0.7.tar.gz
  • Upload date:
  • Size: 19.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.6.0.post20210108 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for xplogger-0.7.tar.gz
Algorithm Hash digest
SHA256 d35ce75e12415cae22f69496871861fc55402bc699ed6955479ace5afc288150
MD5 e113188d0ba650fc81a104fd1fdb7a27
BLAKE2b-256 52a1c7f2d5937d942320279f7d6052b7fa59c99ee86eafd6d2bdfe11fbfdb806

See more details on using hashes here.

File details

Details for the file xplogger-0.7-py3-none-any.whl.

File metadata

  • Download URL: xplogger-0.7-py3-none-any.whl
  • Upload date:
  • Size: 25.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.6.0.post20210108 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for xplogger-0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 c5e7578dbb0d740eb3639933d262a24abd579c74ccadcac964177297520b78a7
MD5 ffec5d959b082a67f9bbcee8626520e3
BLAKE2b-256 ab754c9d0b974d4e4c62a4a55f64105a7bd03040f337b4620163931035f9426c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page