Skip to main content

Yahoo! Finance market data downloader

Project description

Yahoo! Finance market data downloader

Python version PyPi version PyPi status PyPi downloads Travis-CI build status CodeFactor Star this repo Follow me on twitter

Ever since Yahoo! finance decommissioned their historical data API, many programs that relied on it to stop working.

yfinance aimes to solve this problem by offering a reliable, threaded, and Pythonic way to download historical market data from Yahoo! finance.

NOTE

The library was originally named fix-yahoo-finance, but I’ve since renamed it to yfinance as I no longer consider it a mere “fix”. For reasons of backward-compatibility, fix-yahoo-finance now import and uses yfinance, but you should install and use yfinance directly.

Changelog »


==> Check out this Blog post for a detailed tutorial with code examples.


Quick Start

The Ticker module

The Ticker module, which allows you to access ticker data in a more Pythonic way:

Note: yahoo finance datetimes are received as UTC.

import yfinance as yf

msft = yf.Ticker("MSFT")

# get stock info
msft.info

# get historical market data
hist = msft.history(period="max")

# show actions (dividends, splits)
msft.actions

# show dividends
msft.dividends

# show splits
msft.splits

# show financials
msft.financials
msft.quarterly_financials

# show major holders
msft.major_holders

# show institutional holders
msft.institutional_holders

# show balance sheet
msft.balance_sheet
msft.quarterly_balance_sheet

# show cashflow
msft.cashflow
msft.quarterly_cashflow

# show earnings
msft.earnings
msft.quarterly_earnings

# show sustainability
msft.sustainability

# show analysts recommendations
msft.recommendations

# show next event (earnings, etc)
msft.calendar

# show ISIN code - *experimental*
# ISIN = International Securities Identification Number
msft.isin

# show options expirations
msft.options

# get option chain for specific expiration
opt = msft.option_chain('YYYY-MM-DD')
# data available via: opt.calls, opt.puts

If you want to use a proxy server for downloading data, use:

import yfinance as yf

msft = yf.Ticker("MSFT")

msft.history(..., proxy="PROXY_SERVER")
msft.get_actions(proxy="PROXY_SERVER")
msft.get_dividends(proxy="PROXY_SERVER")
msft.get_splits(proxy="PROXY_SERVER")
msft.get_balance_sheet(proxy="PROXY_SERVER")
msft.get_cashflow(proxy="PROXY_SERVER")
msft.option_chain(..., proxy="PROXY_SERVER")
...

To initialize multiple Ticker objects, use

import yfinance as yf

tickers = yf.Tickers('msft aapl goog')
# ^ returns a named tuple of Ticker objects

# access each ticker using (example)
tickers.tickers.MSFT.info
tickers.tickers.AAPL.history(period="1mo")
tickers.tickers.GOOG.actions

Fetching data for multiple tickers

import yfinance as yf
data = yf.download("SPY AAPL", start="2017-01-01", end="2017-04-30")

I’ve also added some options to make life easier :)

data = yf.download(  # or pdr.get_data_yahoo(...
        # tickers list or string as well
        tickers = "SPY AAPL MSFT",

        # use "period" instead of start/end
        # valid periods: 1d,5d,1mo,3mo,6mo,1y,2y,5y,10y,ytd,max
        # (optional, default is '1mo')
        period = "ytd",

        # fetch data by interval (including intraday if period < 60 days)
        # valid intervals: 1m,2m,5m,15m,30m,60m,90m,1h,1d,5d,1wk,1mo,3mo
        # (optional, default is '1d')
        interval = "1m",

        # group by ticker (to access via data['SPY'])
        # (optional, default is 'column')
        group_by = 'ticker',

        # adjust all OHLC automatically
        # (optional, default is False)
        auto_adjust = True,

        # download pre/post regular market hours data
        # (optional, default is False)
        prepost = True,

        # use threads for mass downloading? (True/False/Integer)
        # (optional, default is True)
        threads = True,

        # proxy URL scheme use use when downloading?
        # (optional, default is None)
        proxy = None
    )

pandas_datareader override

If your code uses pandas_datareader and you want to download data faster, you can “hijack” pandas_datareader.data.get_data_yahoo() method to use yfinance while making sure the returned data is in the same format as pandas_datareader’s get_data_yahoo().

from pandas_datareader import data as pdr

import yfinance as yf
yf.pdr_override() # <== that's all it takes :-)

# download dataframe
data = pdr.get_data_yahoo("SPY", start="2017-01-01", end="2017-04-30")

Installation

Install yfinance using pip:

$ pip install yfinance --upgrade --no-cache-dir

Install yfinance using conda:

$ conda install -c ranaroussi yfinance

Requirements

Optional (if you want to use pandas_datareader)

P.S.

Please drop me an note with any feedback you have.

Ran Aroussi

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yfinance-0.1.56.tar.gz (24.4 kB view details)

Uploaded Source

File details

Details for the file yfinance-0.1.56.tar.gz.

File metadata

  • Download URL: yfinance-0.1.56.tar.gz
  • Upload date:
  • Size: 24.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.8

File hashes

Hashes for yfinance-0.1.56.tar.gz
Algorithm Hash digest
SHA256 a6d4c7b939fdd48d983556501f5b387e20aaef86afc8e6ba6f91a49a7e22d2dd
MD5 eb05fcde533a5bd655b4d1c7e7974e1e
BLAKE2b-256 a98f2a053003f7d6e8c1caa7b61499dfc3a7c33bdc85a06fa00d5a7445e2fb1f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page