Skip to main content

Download market data from Yahoo! Finance API

Project description

Download market data from Yahoo! Finance's API

*** IMPORTANT LEGAL DISCLAIMER ***


Yahoo!, Y!Finance, and Yahoo! finance are registered trademarks of Yahoo, Inc.

yfinance is not affiliated, endorsed, or vetted by Yahoo, Inc. It's an open-source tool that uses Yahoo's publicly available APIs, and is intended for research and educational purposes.

You should refer to Yahoo!'s terms of use (here, here, and here) for details on your rights to use the actual data downloaded. Remember - the Yahoo! finance API is intended for personal use only.


Python version PyPi version PyPi status PyPi downloads Travis-CI build status CodeFactor Star this repo Follow me on twitter

yfinance offers a threaded and Pythonic way to download market data from Yahoo!Ⓡ finance.

→ Check out this Blog post for a detailed tutorial with code examples.

Changelog »


News [2023-01-27]

Since December 2022 Yahoo has been encrypting the web data that yfinance scrapes for non-market data. Fortunately the decryption keys are available, although Yahoo moved/changed them several times hence yfinance breaking several times. yfinance is now better prepared for any future changes by Yahoo.

Why is Yahoo doing this? We don't know. Is it to stop scrapers? Maybe, so we've implemented changes to reduce load on Yahoo. In December we rolled out version 0.2 with optimised scraping. Then in 0.2.6 introduced Ticker.fast_info, providing much faster access to some info elements wherever possible e.g. price stats and forcing users to switch (sorry but we think necessary). info will continue to exist for as long as there are elements without a fast alternative. info now fixed and much faster than before.

Quick Start

The Ticker module

The Ticker module, which allows you to access ticker data in a more Pythonic way:

import yfinance as yf

msft = yf.Ticker("MSFT")

# get all stock info
msft.info

# get historical market data
hist = msft.history(period="1mo")

# show meta information about the history (requires history() to be called first)
msft.history_metadata

# show actions (dividends, splits, capital gains)
msft.actions
msft.dividends
msft.splits
msft.capital_gains  # only for mutual funds & etfs

# show share count
# - yearly summary:
msft.shares
# - accurate time-series count:
msft.get_shares_full(start="2022-01-01", end=None)

# show financials:
# - income statement
msft.income_stmt
msft.quarterly_income_stmt
# - balance sheet
msft.balance_sheet
msft.quarterly_balance_sheet
# - cash flow statement
msft.cashflow
msft.quarterly_cashflow
# see `Ticker.get_income_stmt()` for more options

# show holders
msft.major_holders
msft.institutional_holders
msft.mutualfund_holders

# show earnings
msft.earnings
msft.quarterly_earnings

# show sustainability
msft.sustainability

# show analysts recommendations
msft.recommendations
msft.recommendations_summary
# show analysts other work
msft.analyst_price_target
msft.revenue_forecasts
msft.earnings_forecasts
msft.earnings_trend

# show next event (earnings, etc)
msft.calendar

# Show future and historic earnings dates, returns at most next 4 quarters and last 8 quarters by default. 
# Note: If more are needed use msft.get_earnings_dates(limit=XX) with increased limit argument.
msft.earnings_dates

# show ISIN code - *experimental*
# ISIN = International Securities Identification Number
msft.isin

# show options expirations
msft.options

# show news
msft.news

# get option chain for specific expiration
opt = msft.option_chain('YYYY-MM-DD')
# data available via: opt.calls, opt.puts

If you want to use a proxy server for downloading data, use:

import yfinance as yf

msft = yf.Ticker("MSFT")

msft.history(..., proxy="PROXY_SERVER")
msft.get_actions(proxy="PROXY_SERVER")
msft.get_dividends(proxy="PROXY_SERVER")
msft.get_splits(proxy="PROXY_SERVER")
msft.get_capital_gains(proxy="PROXY_SERVER")
msft.get_balance_sheet(proxy="PROXY_SERVER")
msft.get_cashflow(proxy="PROXY_SERVER")
msft.option_chain(..., proxy="PROXY_SERVER")
...

Multiple tickers

To initialize multiple Ticker objects, use

import yfinance as yf

tickers = yf.Tickers('msft aapl goog')

# access each ticker using (example)
tickers.tickers['MSFT'].info
tickers.tickers['AAPL'].history(period="1mo")
tickers.tickers['GOOG'].actions

To download price history into one table:

import yfinance as yf
data = yf.download("SPY AAPL", start="2017-01-01", end="2017-04-30")

yf.download() and Ticker.history() have many options for configuring fetching and processing, e.g.:

yf.download(tickers = "SPY AAPL",  # list of tickers
            period = "1y",         # time period
            interval = "1d",       # trading interval
            prepost = False,       # download pre/post market hours data?
            repair = True)         # repair obvious price errors e.g. 100x?

Review the Wiki for more options and detail.

Smarter scraping

To use a custom requests session (for example to cache calls to the API or customize the User-agent header), pass a session= argument to the Ticker constructor.

import requests_cache
session = requests_cache.CachedSession('yfinance.cache')
session.headers['User-agent'] = 'my-program/1.0'
ticker = yf.Ticker('msft', session=session)
# The scraped response will be stored in the cache
ticker.actions

Combine a requests_cache with rate-limiting to avoid triggering Yahoo's rate-limiter/blocker that can corrupt data.

from requests import Session
from requests_cache import CacheMixin, SQLiteCache
from requests_ratelimiter import LimiterMixin, MemoryQueueBucket
from pyrate_limiter import Duration, RequestRate, Limiter
class CachedLimiterSession(CacheMixin, LimiterMixin, Session):
    pass

session = CachedLimiterSession(
    limiter=Limiter(RequestRate(2, Duration.SECOND*5),  # max 2 requests per 5 seconds
    bucket_class=MemoryQueueBucket,
    backend=SQLiteCache("yfinance.cache"),
)

Managing Multi-Level Columns

The following answer on Stack Overflow is for How to deal with multi-level column names downloaded with yfinance?

  • yfinance returns a pandas.DataFrame with multi-level column names, with a level for the ticker and a level for the stock price data
    • The answer discusses:
      • How to correctly read the the multi-level columns after saving the dataframe to a csv with pandas.DataFrame.to_csv
      • How to download single or multiple tickers into a single dataframe with single level column names and a ticker column

pandas_datareader override

If your code uses pandas_datareader and you want to download data faster, you can "hijack" pandas_datareader.data.get_data_yahoo() method to use yfinance while making sure the returned data is in the same format as pandas_datareader's get_data_yahoo().

from pandas_datareader import data as pdr

import yfinance as yf
yf.pdr_override() # <== that's all it takes :-)

# download dataframe
data = pdr.get_data_yahoo("SPY", start="2017-01-01", end="2017-04-30")

Timezone cache store

When fetching price data, all dates are localized to stock exchange timezone. But timezone retrieval is relatively slow, so yfinance attemps to cache them in your users cache folder. You can direct cache to use a different location with set_tz_cache_location():

import yfinance as yf
yf.set_tz_cache_location("custom/cache/location")
...

Installation

Install yfinance using pip:

$ pip install yfinance --upgrade --no-cache-dir

To install yfinance using conda, see this.

Requirements

Optional (if you want to use pandas_datareader)

Developers: want to contribute?

yfinance relies on community to investigate bugs and contribute code. Developer guide: https://github.com/ranaroussi/yfinance/discussions/1084


Legal Stuff

yfinance is distributed under the Apache Software License. See the LICENSE.txt file in the release for details.

AGAIN - yfinance is not affiliated, endorsed, or vetted by Yahoo, Inc. It's an open-source tool that uses Yahoo's publicly available APIs, and is intended for research and educational purposes. You should refer to Yahoo!'s terms of use (here, here, and here) for detailes on your rights to use the actual data downloaded.


P.S.

Please drop me an note with any feedback you have.

Ran Aroussi

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yfinance-0.2.17.tar.gz (58.3 kB view details)

Uploaded Source

Built Distribution

yfinance-0.2.17-py2.py3-none-any.whl (60.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file yfinance-0.2.17.tar.gz.

File metadata

  • Download URL: yfinance-0.2.17.tar.gz
  • Upload date:
  • Size: 58.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for yfinance-0.2.17.tar.gz
Algorithm Hash digest
SHA256 854bb0b8683d3049f2cb51c1c933b141b07cbddab3f199127d1188fa37d0e267
MD5 d61f5735e0befbf6adf624fd34ee12c1
BLAKE2b-256 a947c524fa79e4f29d7dcae4d9561b4904cc5192f5d89f015cff719531d9cef6

See more details on using hashes here.

File details

Details for the file yfinance-0.2.17-py2.py3-none-any.whl.

File metadata

  • Download URL: yfinance-0.2.17-py2.py3-none-any.whl
  • Upload date:
  • Size: 60.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for yfinance-0.2.17-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 9be0f8222d194b899af5e3860a8d7da0ebba3e641865762494dd435a30ba3301
MD5 7ada7ce7ca767f29b13d1004ae7721bd
BLAKE2b-256 771854c6fde74070bd2a5534740407bdde41876c4e288d57a045d0399e6dd8d1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page