Skip to main content

Download market data from Yahoo! Finance API

Project description

Download market data from Yahoo! Finance's API

*** IMPORTANT LEGAL DISCLAIMER ***


Yahoo!, Y!Finance, and Yahoo! finance are registered trademarks of Yahoo, Inc.

yfinance is not affiliated, endorsed, or vetted by Yahoo, Inc. It's an open-source tool that uses Yahoo's publicly available APIs, and is intended for research and educational purposes.

You should refer to Yahoo!'s terms of use (here, here, and here) for details on your rights to use the actual data downloaded. Remember - the Yahoo! finance API is intended for personal use only.


Python version PyPi version PyPi status PyPi downloads Travis-CI build status CodeFactor Star this repo Follow me on twitter

yfinance offers a threaded and Pythonic way to download market data from Yahoo!Ⓡ finance.

→ Check out this Blog post for a detailed tutorial with code examples.

Changelog »


News

2023-01-27

Since December 2022 Yahoo has been encrypting the web data that yfinance scrapes for non-price data. Price data still works. Fortunately the decryption keys are available, although Yahoo moved/changed them several times hence yfinance breaking several times. yfinance is now better prepared for any future changes by Yahoo.

Why is Yahoo doing this? We don't know. Is it to stop scrapers? Maybe, so we've implemented changes to reduce load on Yahoo. In December we rolled out version 0.2 with optimised scraping. Then in 0.2.6 introduced Ticker.fast_info, providing much faster access to some Ticker.info elements wherever possible e.g. price stats and forcing users to switch (sorry but we think necessary).

2023-02-07

Yahoo is now regularly changing their decryption key, breaking yfinance decryption. Is technically possible to extract this from their webpage but not implemented because difficult, see discussion in the issue thread.

2023-04-09

Fixed Ticker.info

Quick Start

The Ticker module

The Ticker module, which allows you to access ticker data in a more Pythonic way:

import yfinance as yf

msft = yf.Ticker("MSFT")

# get all stock info
msft.info

# get historical market data
hist = msft.history(period="1mo")

# show meta information about the history (requires history() to be called first)
msft.history_metadata

# show actions (dividends, splits, capital gains)
msft.actions
msft.dividends
msft.splits
msft.capital_gains  # only for mutual funds & etfs

# show share count
# - yearly summary:
msft.shares
# - accurate time-series count:
msft.get_shares_full(start="2022-01-01", end=None)

# show financials:
# - income statement
msft.income_stmt
msft.quarterly_income_stmt
# - balance sheet
msft.balance_sheet
msft.quarterly_balance_sheet
# - cash flow statement
msft.cashflow
msft.quarterly_cashflow
# see `Ticker.get_income_stmt()` for more options

# show holders
msft.major_holders
msft.institutional_holders
msft.mutualfund_holders

# show earnings
msft.earnings
msft.quarterly_earnings

# show sustainability
msft.sustainability

# show analysts recommendations
msft.recommendations
msft.recommendations_summary
# show analysts other work
msft.analyst_price_target
msft.revenue_forecasts
msft.earnings_forecasts
msft.earnings_trend

# show next event (earnings, etc)
msft.calendar

# Show future and historic earnings dates, returns at most next 4 quarters and last 8 quarters by default. 
# Note: If more are needed use msft.get_earnings_dates(limit=XX) with increased limit argument.
msft.earnings_dates

# show ISIN code - *experimental*
# ISIN = International Securities Identification Number
msft.isin

# show options expirations
msft.options

# show news
msft.news

# get option chain for specific expiration
opt = msft.option_chain('YYYY-MM-DD')
# data available via: opt.calls, opt.puts

If you want to use a proxy server for downloading data, use:

import yfinance as yf

msft = yf.Ticker("MSFT")

msft.history(..., proxy="PROXY_SERVER")
msft.get_actions(proxy="PROXY_SERVER")
msft.get_dividends(proxy="PROXY_SERVER")
msft.get_splits(proxy="PROXY_SERVER")
msft.get_capital_gains(proxy="PROXY_SERVER")
msft.get_balance_sheet(proxy="PROXY_SERVER")
msft.get_cashflow(proxy="PROXY_SERVER")
msft.option_chain(..., proxy="PROXY_SERVER")
...

Multiple tickers

To initialize multiple Ticker objects, use

import yfinance as yf

tickers = yf.Tickers('msft aapl goog')

# access each ticker using (example)
tickers.tickers['MSFT'].info
tickers.tickers['AAPL'].history(period="1mo")
tickers.tickers['GOOG'].actions

To download price history into one table:

import yfinance as yf
data = yf.download("SPY AAPL", start="2017-01-01", end="2017-04-30")

yf.download() and Ticker.history() have many options for configuring fetching and processing, e.g.:

yf.download(tickers = "SPY AAPL",  # list of tickers
            period = "1y",         # time period
            interval = "1d",       # trading interval
            prepost = False,       # download pre/post market hours data?
            repair = True)         # repair obvious price errors e.g. 100x?

Review the Wiki for more options and detail.

Logging

yfinance now uses the logging module. To control the detail of printed messages you simply change the level:

import logging
logger = logging.getLogger('yfinance')
logger.setLevel(logging.ERROR)  # default: only print errors
logger.setLevel(logging.CRITICAL)  # disable printing
logger.setLevel(logging.DEBUG)  # verbose: print errors & debug info

Smarter scraping

To use a custom requests session (for example to cache calls to the API or customize the User-agent header), pass a session= argument to the Ticker constructor.

import requests_cache
session = requests_cache.CachedSession('yfinance.cache')
session.headers['User-agent'] = 'my-program/1.0'
ticker = yf.Ticker('msft', session=session)
# The scraped response will be stored in the cache
ticker.actions

Combine a requests_cache with rate-limiting to avoid triggering Yahoo's rate-limiter/blocker that can corrupt data.

from requests import Session
from requests_cache import CacheMixin, SQLiteCache
from requests_ratelimiter import LimiterMixin, MemoryQueueBucket
from pyrate_limiter import Duration, RequestRate, Limiter
class CachedLimiterSession(CacheMixin, LimiterMixin, Session):
    pass

session = CachedLimiterSession(
    limiter=Limiter(RequestRate(2, Duration.SECOND*5),  # max 2 requests per 5 seconds
    bucket_class=MemoryQueueBucket,
    backend=SQLiteCache("yfinance.cache"),
)

Managing Multi-Level Columns

The following answer on Stack Overflow is for How to deal with multi-level column names downloaded with yfinance?

  • yfinance returns a pandas.DataFrame with multi-level column names, with a level for the ticker and a level for the stock price data
    • The answer discusses:
      • How to correctly read the the multi-level columns after saving the dataframe to a csv with pandas.DataFrame.to_csv
      • How to download single or multiple tickers into a single dataframe with single level column names and a ticker column

pandas_datareader override

If your code uses pandas_datareader and you want to download data faster, you can "hijack" pandas_datareader.data.get_data_yahoo() method to use yfinance while making sure the returned data is in the same format as pandas_datareader's get_data_yahoo().

from pandas_datareader import data as pdr

import yfinance as yf
yf.pdr_override() # <== that's all it takes :-)

# download dataframe
data = pdr.get_data_yahoo("SPY", start="2017-01-01", end="2017-04-30")

Timezone cache store

When fetching price data, all dates are localized to stock exchange timezone. But timezone retrieval is relatively slow, so yfinance attemps to cache them in your users cache folder. You can direct cache to use a different location with set_tz_cache_location():

import yfinance as yf
yf.set_tz_cache_location("custom/cache/location")
...

Installation

Install yfinance using pip:

$ pip install yfinance --upgrade --no-cache-dir

Test new features by installing betas, provide feedback in corresponding Discussion:

$ pip install yfinance --upgrade --no-cache-dir --pre

To install yfinance using conda, see this.

Requirements

Optional (if you want to use pandas_datareader)

Developers: want to contribute?

yfinance relies on community to investigate bugs and contribute code. Developer guide: https://github.com/ranaroussi/yfinance/discussions/1084


Legal Stuff

yfinance is distributed under the Apache Software License. See the LICENSE.txt file in the release for details.

AGAIN - yfinance is not affiliated, endorsed, or vetted by Yahoo, Inc. It's an open-source tool that uses Yahoo's publicly available APIs, and is intended for research and educational purposes. You should refer to Yahoo!'s terms of use (here, here, and here) for detailes on your rights to use the actual data downloaded.


P.S.

Please drop me an note with any feedback you have.

Ran Aroussi

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yfinance-0.2.19.tar.gz (60.6 kB view details)

Uploaded Source

Built Distribution

yfinance-0.2.19-py2.py3-none-any.whl (62.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file yfinance-0.2.19.tar.gz.

File metadata

  • Download URL: yfinance-0.2.19.tar.gz
  • Upload date:
  • Size: 60.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for yfinance-0.2.19.tar.gz
Algorithm Hash digest
SHA256 9302addb4a213dbbcedb029af967cb4e84883e85cd9d4cc5ab4d863982080dac
MD5 29d20ee4af6df2fd94b5aebf7afae6b4
BLAKE2b-256 f96ddaadb74e33c79c5bd4a483ab098bdbbb4024996dfbccdc12a74feaf0d707

See more details on using hashes here.

File details

Details for the file yfinance-0.2.19-py2.py3-none-any.whl.

File metadata

  • Download URL: yfinance-0.2.19-py2.py3-none-any.whl
  • Upload date:
  • Size: 62.5 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for yfinance-0.2.19-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 c46abf01998e4fa9aff4f4b584d56294508060bd17959db591fe354deab342dc
MD5 9e869a81701c9d51b5016b5895522b80
BLAKE2b-256 339e2e0c8824070d7578b2731281224aa6310eb679dcfeea6fd324109b2cf324

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page