Skip to main content

An analysis and visualization toolkit for volumetric data

Project description

# The yt Project

[![Users’ Mailing List](https://img.shields.io/badge/Users-List-lightgrey.svg)](http://lists.spacepope.org/listinfo.cgi/yt-users-spacepope.org/) [![Devel Mailing List](https://img.shields.io/badge/Devel-List-lightgrey.svg)](http://lists.spacepope.org/listinfo.cgi/yt-dev-spacepope.org/) [![Build Status](https://img.shields.io/travis/yt-project/yt.svg?branch=master)](https://travis-ci.org/yt-project/yt) [![Latest Documentation](https://img.shields.io/badge/docs-latest-brightgreen.svg)](http://yt-project.org/docs/dev/) [![Data Hub](https://img.shields.io/badge/data-hub-orange.svg)](https://hub.yt/) [![Powered by NumFOCUS](https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A)](http://numfocus.org)

<a href=”http://yt-project.org”><img src=”doc/source/_static/yt_logo.png” width=”300”></a>

yt is an open-source, permissively-licensed python package for analyzing and visualizing volumetric data.

yt supports structured, variable-resolution meshes, unstructured meshes, and discrete or sampled data such as particles. Focused on driving physically-meaningful inquiry, yt has been applied in domains such as astrophysics, seismology, nuclear engineering, molecular dynamics, and oceanography. Composed of a friendly community of users and developers, we want to make it easy to use and develop - we’d love it if you got involved!

We’ve written a [method paper](http://adsabs.harvard.edu/abs/2011ApJS..192….9T) you may be interested in; if you use yt in the preparation of a publication, please consider citing it.

## Installation

If you’re using conda with [conda-forge](http://conda-forge.github.io/), you can install the most recent stable version by running:

` conda install -c conda-forge yt `

or by doing:

` pip install yt `

If you want the latest nightly build, you can manually install from our repository:

` conda install -c http://use.yt/with_conda yt `

To get set up with a development version, you can clone this repository and install like this:

` git clone https://github.com/yt-project/yt yt-git cd yt-git pip install -e . `

To set up yt in a virtualenv (and there are [many good reasons](https://packaging.python.org/installing/#creating-virtual-environments) to do so!) you can follow this prescription:

` # Assuming you have cd'd into yt-git # It is conventional to create virtualenvs at ~/.virtualenv/ $ mkdir -p ~/.virtualenv # Assuming your version of Python 3 is 3.4 or higher, # create a virtualenv named yt $ python3 -m venv ~/.virtualenv/yt # Activate it $ source ~/.virtualenv/yt/bin/activate # Make sure you run the latest version of pip $ pip install --upgrade pip $ pip install -e . # Output installed packages $ pip freeze `

## Getting Started

yt is designed to provide meaningful analysis of data. We have some Quickstart example notebooks in the repository:

  • [Introduction](doc/source/quickstart/1)_Introduction.ipynb)

  • [Data Inspection](doc/source/quickstart/2)_Data_Inspection.ipynb)

  • [Simple Visualization](doc/source/quickstart/3)_Simple_Visualization.ipynb)

  • [Data Objects and Time Series](doc/source/quickstart/4)_Data_Objects_and_Time_Series.ipynb)

  • [Derived Fields and Profiles](doc/source/quickstart/5)_Derived_Fields_and_Profiles.ipynb)

  • [Volume Rendering](doc/source/quickstart/6)_Volume_Rendering.ipynb)

If you’d like to try these online, you can visit our [yt Hub](https://hub.yt/) and run a notebook next to some of our example data.

## Contributing

We love contributions! yt is open source, built on open source, and we’d love to have you hang out in our community.

We have developed some [guidelines](CONTRIBUTING.rst) for contributing to yt.

Imposter syndrome disclaimer: We want your help. No, really.

There may be a little voice inside your head that is telling you that you’re not ready to be an open source contributor; that your skills aren’t nearly good enough to contribute. What could you possibly offer a project like this one?

We assure you - the little voice in your head is wrong. If you can write code at all, you can contribute code to open source. Contributing to open source projects is a fantastic way to advance one’s coding skills. Writing perfect code isn’t the measure of a good developer (that would disqualify all of us!); it’s trying to create something, making mistakes, and learning from those mistakes. That’s how we all improve, and we are happy to help others learn.

Being an open source contributor doesn’t just mean writing code, either. You can help out by writing documentation, tests, or even giving feedback about the project (and yes - that includes giving feedback about the contribution process). Some of these contributions may be the most valuable to the project as a whole, because you’re coming to the project with fresh eyes, so you can see the errors and assumptions that seasoned contributors have glossed over.

(This disclaimer was originally written by [Adrienne Lowe](https://github.com/adriennefriend) for a [PyCon talk](https://www.youtube.com/watch?v=6Uj746j9Heo), and was adapted by yt based on its use in the README file for the [MetPy project](https://github.com/Unidata/MetPy))

## Resources

We have some community and documentation resources available.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yt-3.4.0.tar.gz (10.0 MB view details)

Uploaded Source

Built Distributions

yt-3.4.0-cp36-cp36m-win_amd64.whl (10.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

yt-3.4.0-cp36-cp36m-manylinux1_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.6m

yt-3.4.0-cp36-cp36m-manylinux1_i686.whl (20.2 MB view details)

Uploaded CPython 3.6m

yt-3.4.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (13.7 MB view details)

Uploaded CPython 3.6m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

yt-3.4.0-cp35-cp35m-win_amd64.whl (10.2 MB view details)

Uploaded CPython 3.5m Windows x86-64

yt-3.4.0-cp35-cp35m-manylinux1_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.5m

yt-3.4.0-cp35-cp35m-manylinux1_i686.whl (19.9 MB view details)

Uploaded CPython 3.5m

yt-3.4.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (13.7 MB view details)

Uploaded CPython 3.5m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

yt-3.4.0-cp34-cp34m-manylinux1_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.4m

yt-3.4.0-cp34-cp34m-manylinux1_i686.whl (20.1 MB view details)

Uploaded CPython 3.4m

yt-3.4.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.4m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

yt-3.4.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (14.4 MB view details)

Uploaded CPython 2.7 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

yt-3.4.0-cp27-cp27mu-manylinux1_x86_64.whl (20.8 MB view details)

Uploaded CPython 2.7mu

yt-3.4.0-cp27-cp27mu-manylinux1_i686.whl (19.8 MB view details)

Uploaded CPython 2.7mu

yt-3.4.0-cp27-cp27m-win_amd64.whl (10.4 MB view details)

Uploaded CPython 2.7m Windows x86-64

yt-3.4.0-cp27-cp27m-manylinux1_x86_64.whl (20.8 MB view details)

Uploaded CPython 2.7m

yt-3.4.0-cp27-cp27m-manylinux1_i686.whl (19.8 MB view details)

Uploaded CPython 2.7m

File details

Details for the file yt-3.4.0.tar.gz.

File metadata

  • Download URL: yt-3.4.0.tar.gz
  • Upload date:
  • Size: 10.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for yt-3.4.0.tar.gz
Algorithm Hash digest
SHA256 de52057d1677473a83961d8a1119a9beae3121ec69a4a5469c65348a75096d4c
MD5 4e3df6a98d6199a942a67a701bffb406
BLAKE2b-256 64a9b473642ae881c207566aa5d3cf0c5f69c1131e51d1a2c9d87a255e0951ed

See more details on using hashes here.

File details

Details for the file yt-3.4.0-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for yt-3.4.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a4f499cd76494976a80276c8b7439d464cc5e28f22af6cba8190cb2d9b912d8c
MD5 f5c6bc6d22e5214d1affcade65b181a8
BLAKE2b-256 fc579781b103c974c3c79f7b1702870d291b61d026b59689a395294d845716eb

See more details on using hashes here.

File details

Details for the file yt-3.4.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for yt-3.4.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3b718c14f755bf4802b823ba465be8abf666350ff4aae4c52163d92900e41a75
MD5 501aa5ac9c61a71cf602fedd48935722
BLAKE2b-256 8d05f4788c5cdce6f2848f777042787ba310caf504af74ebd7cb2c5bd2e0c12c

See more details on using hashes here.

File details

Details for the file yt-3.4.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for yt-3.4.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 205c6bdb3b4d48f9cf0a554a53b0c7e23b28758efacdfb4ef5db34698cab2406
MD5 f3e52629b5c74821fbe0ae6dca7c2dd9
BLAKE2b-256 2c3f52b4639da196d3e3ae83e745114f663cddf87727a13ef3e0cf109ba9b391

See more details on using hashes here.

File details

Details for the file yt-3.4.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for yt-3.4.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f8ed87b0c4912822a97f931e2e735631bd72d17c407ac1ac2183a0d2ea3421ab
MD5 176674ad0890b46681f423a6ebc3076a
BLAKE2b-256 942b236b92c5db2fd22f9a37d444a239cf07c7b791faeac9975a7bb1ba441760

See more details on using hashes here.

File details

Details for the file yt-3.4.0-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for yt-3.4.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 4435f146bf7e7b15aaff03e398d534dc91df870bb53071316702850693876133
MD5 34765b8a11adc9454e19ff39c9e49076
BLAKE2b-256 274714db3081cba956438d96375072d86f111ac6574cc8a7859fabc0f88854f1

See more details on using hashes here.

File details

Details for the file yt-3.4.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for yt-3.4.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b4a1c1dc57dc1f3befd58467b3cc4a88744fb4108d0bb45762cb40c14d710ff9
MD5 9166696bc494c64d940b9db82ba74434
BLAKE2b-256 f432d12eda5ec4f526b7cb33e4a130b6977261090f2c94fa8e7a318d02b772b0

See more details on using hashes here.

File details

Details for the file yt-3.4.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for yt-3.4.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 adca2f58f4c98a0b67f5b467588a5d801707fd58fe5b716e4ee04712811994e4
MD5 e306eafb6fb4bc9bd2495d3d8ab0e92a
BLAKE2b-256 abee1346fc4d2f74ad2a21ed9c29c1b296e373ce6772be6d4555de7f57b8a0e3

See more details on using hashes here.

File details

Details for the file yt-3.4.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for yt-3.4.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5fdf20da8be78f5a4796122ef062ee84332a8d78cac2b002af6eb9d8a8a6a367
MD5 fec1b24d8408a652216bbcd71a2df56a
BLAKE2b-256 d30f70dbdc94cf229420e5370035a9920434921a78948f401bf65039ddb82b81

See more details on using hashes here.

File details

Details for the file yt-3.4.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for yt-3.4.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5a4a02bdc5d5210a40d9df7192290dbdb9ecc1947814e87866a64ab5b9dad173
MD5 15b68ab4de6e7c6d7bfcb8e012974437
BLAKE2b-256 f7661a3a854dcfa069f7d41af6f85008c1a71ccdebfb2944e50f8be12ebfd893

See more details on using hashes here.

File details

Details for the file yt-3.4.0-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for yt-3.4.0-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 53f2009ae7a52abd18063f12ca6f9bb581fc5678ce2d077b58cc44cd04d75374
MD5 37cc124682a613c0271147383a834931
BLAKE2b-256 7f613c02198bedd87e48897616417a7b8f8168df0aea1cdd9f178e566f6e7f1b

See more details on using hashes here.

File details

Details for the file yt-3.4.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for yt-3.4.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 63dadf340bf89abed71e1eed17ff95001c61b611db73dd6f0b9e66b824856593
MD5 e602d683fce16da6a9590a7762fc5266
BLAKE2b-256 aca793ab864a9d3048d53b5ddd753417896b9ebf6ac383ddda1c7560a7cb1b13

See more details on using hashes here.

File details

Details for the file yt-3.4.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for yt-3.4.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ac79681eeecee421fdd36acc488593d72ab26e853e770a5d5a90213eaf452bf3
MD5 1bda900d797bbf2b577befe0db8a3cb0
BLAKE2b-256 b8f446aa22eb3ce68e1c4a9210fbabc49489842d1db74fec8b6dc829c90a58e9

See more details on using hashes here.

File details

Details for the file yt-3.4.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for yt-3.4.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ee84beb8bebd9939889962d2478a6c51004d0b21659ae06cc57463fd25bf74e0
MD5 bf1667abc292629a83003af6c882e791
BLAKE2b-256 326dd0479d3eda15b31e2f0f2b747c68af63b8797dcbc8e58cdb25c8b71a7496

See more details on using hashes here.

File details

Details for the file yt-3.4.0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for yt-3.4.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 07c9cbee9916246daaec7c94ff733ea17d9b6c946ea6e00368997246a39351f5
MD5 e2681359e88d80a8c3d80e00745b077f
BLAKE2b-256 e1284679587d6d2f1761ed0c7de92609913db03f949501cd63789cb79fea3ac0

See more details on using hashes here.

File details

Details for the file yt-3.4.0-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for yt-3.4.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 a02bced9b978a15c62b2d840a31c09d77e8e63c8b5600602e945291b632fe654
MD5 d8d9ec526a86b8eca36b57d7cdcf59a1
BLAKE2b-256 069fa1ca1743bf0997f9072a5487ef055f7b65eed1173cf8f2b674e91a7ac327

See more details on using hashes here.

File details

Details for the file yt-3.4.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for yt-3.4.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bb9bfa153c6898d8ca8955554b221e31253c6ed59758dceee74b19c111bbd24a
MD5 ca43cf2992f9f0d447cf47a7b9393870
BLAKE2b-256 db613093b3c594f3c9bc3665316f91cb25f2866d36f3e42ce1da9adf367e6acd

See more details on using hashes here.

File details

Details for the file yt-3.4.0-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for yt-3.4.0-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 0966a1d355a4c0f136d60fca8ca66dcb9b62fb74fe047ef4330d63ada9348134
MD5 4c63a73bbd207a918e94f7877f59b3fc
BLAKE2b-256 7d728d9287120d63a41fe17343e7645cfa4dd96d47da5d74ff42f2d24e915639

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page