Skip to main content

An analysis and visualization toolkit for volumetric data

Project description

# The yt Project

[![Users’ Mailing List](https://img.shields.io/badge/Users-List-lightgrey.svg)](https://mail.python.org/mm3/archives/list/yt-users@python.org//) [![Devel Mailing List](https://img.shields.io/badge/Devel-List-lightgrey.svg)](https://mail.python.org/mm3/archives/list/yt-dev@python.org//) [![Build Status](https://img.shields.io/travis/yt-project/yt.svg?branch=master)](https://travis-ci.org/yt-project/yt) [![Latest Documentation](https://img.shields.io/badge/docs-latest-brightgreen.svg)](http://yt-project.org/docs/dev/) [![Data Hub](https://img.shields.io/badge/data-hub-orange.svg)](https://hub.yt/) [![Powered by NumFOCUS](https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A)](http://numfocus.org)

<a href=”http://yt-project.org”><img src=”doc/source/_static/yt_logo.png” width=”300”></a>

yt is an open-source, permissively-licensed python package for analyzing and visualizing volumetric data.

yt supports structured, variable-resolution meshes, unstructured meshes, and discrete or sampled data such as particles. Focused on driving physically-meaningful inquiry, yt has been applied in domains such as astrophysics, seismology, nuclear engineering, molecular dynamics, and oceanography. Composed of a friendly community of users and developers, we want to make it easy to use and develop - we’d love it if you got involved!

We’ve written a [method paper](http://adsabs.harvard.edu/abs/2011ApJS..192….9T) you may be interested in; if you use yt in the preparation of a publication, please consider citing it.

## Code of Conduct

yt abides by a code of conduct partially modified from the PSF code of conduct, and is found [in our contributing guide](http://yt-project.org/docs/dev/developing/developing.html#yt-community-code-of-conduct).

## Installation

If you’re using conda with [conda-forge](http://conda-forge.github.io/), you can install the most recent stable version by running:

` conda install -c conda-forge yt `

or by doing:

` pip install yt `

If you want the latest nightly build, you can manually install from our repository:

` conda install -c http://use.yt/with_conda yt `

To get set up with a development version, you can clone this repository and install like this:

` git clone https://github.com/yt-project/yt yt-git cd yt-git pip install -e . `

To set up yt in a virtualenv (and there are [many good reasons](https://packaging.python.org/installing/#creating-virtual-environments) to do so!) you can follow this prescription:

` # Assuming you have cd'd into yt-git # It is conventional to create virtualenvs at ~/.virtualenv/ $ mkdir -p ~/.virtualenv # Assuming your version of Python 3 is 3.4 or higher, # create a virtualenv named yt $ python3 -m venv ~/.virtualenv/yt # Activate it $ source ~/.virtualenv/yt/bin/activate # Make sure you run the latest version of pip $ pip install --upgrade pip $ pip install -e . # Output installed packages $ pip freeze `

## Getting Started

yt is designed to provide meaningful analysis of data. We have some Quickstart example notebooks in the repository:

  • [Introduction](doc/source/quickstart/1)_Introduction.ipynb)

  • [Data Inspection](doc/source/quickstart/2)_Data_Inspection.ipynb)

  • [Simple Visualization](doc/source/quickstart/3)_Simple_Visualization.ipynb)

  • [Data Objects and Time Series](doc/source/quickstart/4)_Data_Objects_and_Time_Series.ipynb)

  • [Derived Fields and Profiles](doc/source/quickstart/5)_Derived_Fields_and_Profiles.ipynb)

  • [Volume Rendering](doc/source/quickstart/6)_Volume_Rendering.ipynb)

If you’d like to try these online, you can visit our [yt Hub](https://hub.yt/) and run a notebook next to some of our example data.

## Contributing

We love contributions! yt is open source, built on open source, and we’d love to have you hang out in our community.

We have developed some [guidelines](CONTRIBUTING.rst) for contributing to yt.

Imposter syndrome disclaimer: We want your help. No, really.

There may be a little voice inside your head that is telling you that you’re not ready to be an open source contributor; that your skills aren’t nearly good enough to contribute. What could you possibly offer a project like this one?

We assure you - the little voice in your head is wrong. If you can write code at all, you can contribute code to open source. Contributing to open source projects is a fantastic way to advance one’s coding skills. Writing perfect code isn’t the measure of a good developer (that would disqualify all of us!); it’s trying to create something, making mistakes, and learning from those mistakes. That’s how we all improve, and we are happy to help others learn.

Being an open source contributor doesn’t just mean writing code, either. You can help out by writing documentation, tests, or even giving feedback about the project (and yes - that includes giving feedback about the contribution process). Some of these contributions may be the most valuable to the project as a whole, because you’re coming to the project with fresh eyes, so you can see the errors and assumptions that seasoned contributors have glossed over.

(This disclaimer was originally written by [Adrienne Lowe](https://github.com/adriennefriend) for a [PyCon talk](https://www.youtube.com/watch?v=6Uj746j9Heo), and was adapted by yt based on its use in the README file for the [MetPy project](https://github.com/Unidata/MetPy))

## Resources

We have some community and documentation resources available.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yt-3.4.1.tar.gz (10.1 MB view details)

Uploaded Source

Built Distributions

yt-3.4.1-cp37-cp37m-win_amd64.whl (10.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

yt-3.4.1-cp37-cp37m-win32.whl (10.0 MB view details)

Uploaded CPython 3.7m Windows x86

yt-3.4.1-cp37-cp37m-manylinux1_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.7m

yt-3.4.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (14.1 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

yt-3.4.1-cp36-cp36m-win_amd64.whl (10.4 MB view details)

Uploaded CPython 3.6m Windows x86-64

yt-3.4.1-cp36-cp36m-win32.whl (9.9 MB view details)

Uploaded CPython 3.6m Windows x86

yt-3.4.1-cp36-cp36m-manylinux1_x86_64.whl (11.1 MB view details)

Uploaded CPython 3.6m

yt-3.4.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

yt-3.4.1-cp35-cp35m-win_amd64.whl (10.4 MB view details)

Uploaded CPython 3.5m Windows x86-64

yt-3.4.1-cp35-cp35m-win32.whl (9.8 MB view details)

Uploaded CPython 3.5m Windows x86

yt-3.4.1-cp35-cp35m-manylinux1_x86_64.whl (11.1 MB view details)

Uploaded CPython 3.5m

yt-3.4.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

yt-3.4.1-cp34-cp34m-win_amd64.whl (10.3 MB view details)

Uploaded CPython 3.4m Windows x86-64

yt-3.4.1-cp34-cp34m-win32.whl (9.9 MB view details)

Uploaded CPython 3.4m Windows x86

yt-3.4.1-cp34-cp34m-manylinux1_x86_64.whl (11.1 MB view details)

Uploaded CPython 3.4m

yt-3.4.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (14.2 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

yt-3.4.1-cp27-cp27mu-manylinux1_x86_64.whl (11.3 MB view details)

Uploaded CPython 2.7mu

yt-3.4.1-cp27-cp27m-win_amd64.whl (10.6 MB view details)

Uploaded CPython 2.7m Windows x86-64

yt-3.4.1-cp27-cp27m-win32.whl (10.0 MB view details)

Uploaded CPython 2.7m Windows x86

yt-3.4.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (14.6 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file yt-3.4.1.tar.gz.

File metadata

  • Download URL: yt-3.4.1.tar.gz
  • Upload date:
  • Size: 10.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for yt-3.4.1.tar.gz
Algorithm Hash digest
SHA256 a4cfc47fe21683e7a3b680c05fe2a25fb774ffda6e3939a35755e5bf64065895
MD5 fcc0b36e2aa2bd2dd23ecf9060e93207
BLAKE2b-256 57b7727fc259222233f40793d9b1de9baad24b298b0760c936d0b9db76a8dee6

See more details on using hashes here.

File details

Details for the file yt-3.4.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for yt-3.4.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a2ae98e6247413ae72cb5501f38863dfade89567622036c597082ef06002b22d
MD5 3cf47aa2514f561559a61f11d6df674f
BLAKE2b-256 ee1e9891b3609a14a9ea3c95a552ee66ca287a3169b1012597f7eee047e4ee82

See more details on using hashes here.

File details

Details for the file yt-3.4.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: yt-3.4.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 10.0 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for yt-3.4.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 1fc4b2243555556f9bb1e21682de0c19c549b661f01444dd5e2515d1151c5e7d
MD5 bf521152edb711205a1ddcee71a5bfa7
BLAKE2b-256 8198e7c0bb9370dc03e10791e6766bd4f77cb3510f3197bf2f4d87f25c41b01c

See more details on using hashes here.

File details

Details for the file yt-3.4.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for yt-3.4.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1833d670e0883659d5ffdefd7ed391c4343f183276652ee744aa655ae1d997f8
MD5 0a03d229c7611856fc4e213f15b1ae42
BLAKE2b-256 224e2f82146e25eb30fbc42f9e4e5f6271dd783690ccbacdfd6f0d1dc1feee8b

See more details on using hashes here.

File details

Details for the file yt-3.4.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for yt-3.4.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 ba44084bcd2f87d4c03b031f57c6e2373549cfbbcb4c392833db5a06df68d0f8
MD5 6025d42963cb1269e37d9df16491da3a
BLAKE2b-256 c479c971fad5f93e4a2b97cec1c0f001bbe0de2aea30dfe74d99d21bb82c048f

See more details on using hashes here.

File details

Details for the file yt-3.4.1-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for yt-3.4.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 dda9e83dca9452448c6d20a06004c6c909ecc855e39c57faa8e1ed5b7fb5d5ab
MD5 7103a2afefb226ac3c02e89c0af55904
BLAKE2b-256 338dd0b8237d0f99dce44f061afd961596513f38dcacc124b06b89a7c32a552e

See more details on using hashes here.

File details

Details for the file yt-3.4.1-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for yt-3.4.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 04fb67227191dc45462053cf73970a244cc8579e9530aa7329b0182fed27d766
MD5 2191189aace5f298f8a6937044619dc9
BLAKE2b-256 ffe203fafd2cd0d23d5a80bcda0aa304653b70d9a07f9d460fc92ceda66f134c

See more details on using hashes here.

File details

Details for the file yt-3.4.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for yt-3.4.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c15b2bb88d34b41beec9c8aab036803eb7cd5aefe908e8d3751768b307d3e3af
MD5 2d80637fc14216adea5934299b23b97e
BLAKE2b-256 f5dd50f498b9fefd1141cadb6c69574bf9e7095b20a65e3ed075a742d40ff28f

See more details on using hashes here.

File details

Details for the file yt-3.4.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for yt-3.4.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 12bc00af4245d98bc4a6599c0b19edce502f71352d60779ee4e60dd4938801ca
MD5 2c087046c9d794a956796171e5698870
BLAKE2b-256 3c977182a09186c4b76fbc98fa6fb3f37cb85ba7a8af00ed898f5f0133ec7a67

See more details on using hashes here.

File details

Details for the file yt-3.4.1-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for yt-3.4.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 71ebc043ab307d6d78b76dcaff6f784b484eac2418752c1e71bc758f96fdeba8
MD5 7982e380550fa88dbbde1a610fc7aa81
BLAKE2b-256 0e54da23e90260ef2f5c37e808092e08885925493750bbed38551967d9d00df1

See more details on using hashes here.

File details

Details for the file yt-3.4.1-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for yt-3.4.1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 27c52ed9307b21792913571ecd43a9583df16c980ef64f8f012539eeecf9b8a1
MD5 33aead456d342846b654fe365f60c963
BLAKE2b-256 6500cc176aae8f82053acc7ab7bad2ea0b5543738420ec4831670647f712249e

See more details on using hashes here.

File details

Details for the file yt-3.4.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for yt-3.4.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b3ffa14f859243ecf6c79288408b5ef631eee59b8bfc8c1ac011c25ddf203048
MD5 d79b24e72c03554ea28a9f56c38406c2
BLAKE2b-256 796a697320ea1df6f4d6e6a134bba615a3177943b2f2223c0bd7b317f95dc8a6

See more details on using hashes here.

File details

Details for the file yt-3.4.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for yt-3.4.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 9e740d907b78431e8fca02830599b329031dc9273f611fd07bc2dc7055c5f8d9
MD5 7741e13b0057ab42faa4fb6669a9d7d5
BLAKE2b-256 982d7e3bb5620f3c8a0a0bd981e73e9591d803f1aae6b52d5d8788c8db7666c5

See more details on using hashes here.

File details

Details for the file yt-3.4.1-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for yt-3.4.1-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 eec4e13d996747c4fa38a837228ee19aaac028f8d6c3df5f76ddfaddb0d9bfa7
MD5 52821af98e674d7f8657350605402d41
BLAKE2b-256 ebb7f33c08e40fab4964bc3245ff62c4ec3b0bf188032a2c0e583f84d572e27e

See more details on using hashes here.

File details

Details for the file yt-3.4.1-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for yt-3.4.1-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 765be3e079302889ae8dd687383e2c29e55c849cf30e582dc98759a8d7cc6c1c
MD5 f41ddf3ad87eb71f68f3c37f1b98c415
BLAKE2b-256 2d63047ef6311bf7a6009ccb1c764bcaec6cd439a97c8235d3c0344030015e17

See more details on using hashes here.

File details

Details for the file yt-3.4.1-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for yt-3.4.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2a7d3a11ab48a084936d7551de7fb5c09a3c79100b943fcb099a798aecd89351
MD5 a400d3193a162f783ab67eeddff9f2d1
BLAKE2b-256 5b5fc81afed2621c2b34091b660610184044c7307ec40f5326f519fda25197a2

See more details on using hashes here.

File details

Details for the file yt-3.4.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for yt-3.4.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 ef87c37e4993a12fcbf5f90746e2c1593a3a2ff688c958ba723047526f0426c3
MD5 36ead34335ec9b10354c4a5966a6df89
BLAKE2b-256 d6e25fc3af5d95cf3bd35a49cdd768a202a825113f1161660537f90167620741

See more details on using hashes here.

File details

Details for the file yt-3.4.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for yt-3.4.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4e98f5d8d684934d4160f78a7fd505880775c764efd824e90bdde08f1ef27dc1
MD5 80470294aa1940260cda826242272b1f
BLAKE2b-256 9787312eaa9c7d37abd2491937a3448fe6fc0fbe10dce9025a628c2efd488c8a

See more details on using hashes here.

File details

Details for the file yt-3.4.1-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for yt-3.4.1-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 5ef039bbab2aaacf83e6338d2bb85f448bde3400c8af5d5e455d5dcb3e7e75ac
MD5 e81c12dbb624b8b4930059075cdec303
BLAKE2b-256 e016c21525e7a1786e7042b299015cb1ab8b4c5d548679daf9624fffff458698

See more details on using hashes here.

File details

Details for the file yt-3.4.1-cp27-cp27m-win32.whl.

File metadata

  • Download URL: yt-3.4.1-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 10.0 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for yt-3.4.1-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 22339b276307187368773399f575b2f5afeb994cbab137a6a0b3a1455b4a66b8
MD5 771b752622d4e7f2ee69c9a9eeb13ca4
BLAKE2b-256 dee729a1c74372009060c62a57ac1d18072f6f3f3b668c80f50b0739c020b390

See more details on using hashes here.

File details

Details for the file yt-3.4.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for yt-3.4.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 7e311d6f4f513e1c449b36e4b609d79dcd5f107287bcbdd09b0e32e86ef993ce
MD5 9c971ee4c84f4cb507e4bc22574cf13a
BLAKE2b-256 77234fc7c9fc603b42260801323f0b8b4ce8195a9ccd599e1755052a83e70499

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page