Skip to main content

A minimal implementation of chunked, compressed, N-dimensional arrays for Python.

Project description

A minimal implementation of chunked, compressed, N-dimensional arrays for Python.

Installation

Install from GitHub (requires NumPy and Cython pre-installed):

$ pip install -U git+https://github.com/alimanfoo/zarr.git@master

Status

Highly experimental, pre-alpha. Bug reports and pull requests very welcome.

Design goals

  • Chunking in multiple dimensions

  • Resize any dimension

  • Concurrent reads

  • Concurrent writes

  • Release the GIL during compression and decompression

Usage

Create an array:

>>> import numpy as np
>>> import zarr
>>> z = zarr.empty((10000, 1000), dtype='i4', chunks=(1000, 100))
>>> z
zarr.ext.Array((10000, 1000), int32, chunks=(1000, 100), nbytes=38.1M, cbytes=0, cname=blosclz, clevel=5, shuffle=1)

Fill it with some data:

>>> z[:] = np.arange(10000000, dtype='i4').reshape(10000, 1000)
>>> z
zarr.ext.Array((10000, 1000), int32, chunks=(1000, 100), nbytes=38.1M, cbytes=2.0M, cratio=19.3, cname=blosclz, clevel=5, shuffle=1)

Obtain a NumPy array:

>>> z[:]
array([[      0,       1,       2, ...,     997,     998,     999],
       [   1000,    1001,    1002, ...,    1997,    1998,    1999],
       [   2000,    2001,    2002, ...,    2997,    2998,    2999],
       ...,
       [9997000, 9997001, 9997002, ..., 9997997, 9997998, 9997999],
       [9998000, 9998001, 9998002, ..., 9998997, 9998998, 9998999],
       [9999000, 9999001, 9999002, ..., 9999997, 9999998, 9999999]], dtype=int32)

Resize the array and add more data:

>>> z.resize(20000, 1000)
>>> z
zarr.ext.Array((20000, 1000), int32, chunks=(1000, 100), nbytes=76.3M, cbytes=2.0M, cratio=38.5, cname=blosclz, clevel=5, shuffle=1)
>>> z[10000:, :] = np.arange(10000000, dtype='i4').reshape(10000, 1000)
>>> z
zarr.ext.Array((20000, 1000), int32, chunks=(1000, 100), nbytes=76.3M, cbytes=4.0M, cratio=19.3, cname=blosclz, clevel=5, shuffle=1)

For convenience, an append method is also available, which can be used to append data to any axis:

>>> a = np.arange(10000000, dtype='i4').reshape(10000, 1000)
>>> z = zarr.array(a, chunks=(1000, 100))
>>> z
zarr.ext.Array((10000, 1000), int32, chunks=(1000, 100), nbytes=38.1M, cbytes=2.0M, cratio=19.3, cname=blosclz, clevel=5, shuffle=1)
>>> z.append(a+a)
>>> z
zarr.ext.Array((20000, 1000), int32, chunks=(1000, 100), nbytes=76.3M, cbytes=3.6M, cratio=21.2, cname=blosclz, clevel=5, shuffle=1)
>>> z.append(np.vstack([a, a]), axis=1)
>>> z
zarr.ext.Array((20000, 2000), int32, chunks=(1000, 100), nbytes=152.6M, cbytes=7.6M, cratio=20.2, cname=blosclz, clevel=5, shuffle=1)

Tuning

zarr is designed for use in parallel computations working chunk-wise over data. Try it with [dask.array](http://dask.pydata.org/en/latest/array.html).

zarr is optimised for accessing and storing data in contiguous slices, of the same size or larger than chunks. It is not and will never be optimised for single item access.

Chunks sizes >= 1M are generally good. Optimal chunk shape will depend on the correlation structure in your data.

Acknowledgments

zarr uses [c-blosc](https://github.com/Blosc/c-blosc) internally for compression and decompression and borrows code heavily from [bcolz](http://bcolz.blosc.org/).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zarr-0.2.5.tar.gz (420.8 kB view details)

Uploaded Source

File details

Details for the file zarr-0.2.5.tar.gz.

File metadata

  • Download URL: zarr-0.2.5.tar.gz
  • Upload date:
  • Size: 420.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for zarr-0.2.5.tar.gz
Algorithm Hash digest
SHA256 b9d2d757870685585aa57a743697b02350e6c0a9229f0691d36064b82e2d5fdd
MD5 38780ecf218db809796bf2b6d5d6b986
BLAKE2b-256 1df6562d6fd3390885c83ce510e057736a97aa3d5defbb49b44ea1379f775eb6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page